Zhejiang Da Xue Xue Bao Yi Xue Ban
February 2022
Magnetic nanoparticles (MNP) have been widely used as biomaterials due to their unique magnetic responsiveness and biocompatibility, which also can promote osteogenic differentiation through their inherent micro-magnetic field. The MNP composite scaffold retains its superparamagnetism, which has good physical, mechanical and biological properties with significant osteogenic effects and . Magnetic field has been proved to promote bone tissue repair by affecting cell metabolic behavior.
View Article and Find Full Text PDFThe aim of the present study was to investigate the expression of microRNA (miRNA/miR)-214 in the sera of elderly patients with acute myocardial infarction (AMI) and the mechanism of how its expression affects cardiomyocyte apoptosis in these patients. The expression levels of miRNA-214 in elderly patients with AMI, unstable angina (UA) and healthy elderly subjects were detected by reverse transcription-quantitative polymerase chain reaction, and the correlation between the relative expressions of sera miRNA-214 and myocardial enzymes in elderly patients with AMI was examined by Pearson's analysis. Human cardiomyocyte (HCM) cell lines with a high expression miRNA-214 were established.
View Article and Find Full Text PDF