Unlabelled: Piezo channels are associated with neuropathology in diseases like traumatic brain injury and glaucoma, but pathways linking tissue stretch to aberrant neural signaling remain unclear. The present study demonstrates that Piezo1 activation increases action potential frequency in response to light and the spontaneous dark signal from mouse retinal explants. Piezo1 stimulation was sufficient to increase cytoplasmic Ca in soma and neurites, while stretch increased spiking activity in current clamp recordings from of isolated retinal ganglion cells (RGCs).
View Article and Find Full Text PDFThis study characterizes a fluorescent -tdTomato neuronal reporter mouse line offering strong labeling in axons throughout the optic nerve, dendrites and soma in 99% of retinal ganglion cells (RGCs). The model facilitates neuronal assessment with wholemounts quantified to show neurodegeneration following optic nerve crush or elevated IOP as related to glaucoma, with robust Ca responses to P2X7 receptor stimulation in neuronal cultures, and using a confocal scanning laser ophthalmoscope (cSLO). While the tdTomato signal showed strong overlap with RGC markers, BRN3A and RBPMS, there was no cross-labeling of displaced amacrine cells in the ganglion cell layer.
View Article and Find Full Text PDFCytokine IL-1β is an early component of inflammatory cascades, with both priming and activation steps required before IL-1β release. Here, the P2X7 receptor (P2X7R) for ATP was shown to both prime and release IL-1β from retinal microglial cells. Isolated retinal microglial cells increased expression of when stimulated with endogenous receptor agonist extracellular ATP; ATP also rapidly downregulated expression of microglial markers and Changes to all three genes were reduced by specific P2X7R antagonist A839977, implicating the P2X7R.
View Article and Find Full Text PDFAn enhanced understanding of neurotransmitter systems contributing to pain transmission aids in drug development, while the identification of biological variables like age and sex helps in the development of personalized pain management and effective clinical trial design. This study identified enhanced expression of purinergic signaling components specifically in painful inflammation, with levels increased more in women as compared to men. Inflammatory dental pain is common and potentially debilitating; as inflammation of the dental pulp can occur with or without pain, it provides a powerful model to examine distinct pain pathways in humans.
View Article and Find Full Text PDFBackground: The identification of endogenous signals that lead to microglial activation is a key step in understanding neuroinflammatory cascades. As ATP release accompanies mechanical strain to neural tissue, and as the P2X7 receptor for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7 receptor stimulation in vivo and in vitro and investigated the contribution of the P2X7 receptor in a model of increased intraocular pressure (IOP).
Methods: In vivo experiments involved intravitreal injections and both transient and sustained elevation of IOP.
Cytokine release from non-inflammatory cells is a key step in innate immunity, and agonists triggering cytokine release are central in coordinating responses. P2X7 receptor (P2X7R) stimulation by extracellular ATP is best known to active the NLRP3 inflammasome and release IL-1β, but stimulation also leads to release of other cytokines. As cytokine signaling by retinal pigmented epithelial (RPE) cells is implicated in retinal neurodegeneration, the role of P2X7R in release of cytokine IL-6 from RPE cells was investigated.
View Article and Find Full Text PDFPurpose: Acyclovir is most commonly used for treating ocular Herpes Keratitis, a leading cause of infectious blindness. However, emerging resistance to Acyclovir resulting from mutations in the thymidine kinase gene of Herpes Simplex Virus -1 (HSV-1), has prompted the need for new therapeutics directed against a different viral protein. One novel target is the HSV-1 Processivity Factor which is essential for tethering HSV-1 Polymerase to the viral genome to enable long-chain DNA synthesis.
View Article and Find Full Text PDFPurpose: Accumulation of lysosomal waste is linked to neurodegeneration in multiple diseases, and pharmacologic enhancement of lysosomal activity is hypothesized to reduce pathology. An excessive accumulation of lysosomal-associated lipofuscin waste and an elevated lysosomal pH occur in retinal pigment epithelial cells of the ABCA4-/- mouse model of Stargardt's retinal degeneration. As treatment with the P2Y12 receptor antagonist ticagrelor was previously shown to lower lysosomal pH and lipofuscin-like autofluorescence in these cells, we asked whether oral delivery of ticagrelor also prevented photoreceptor loss.
View Article and Find Full Text PDFThe accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE) cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4 mouse model of Stargardt's disease, an early onset retinal degeneration.
View Article and Find Full Text PDFCross-reactions between innate immunity, lysosomal function, and purinergic pathways may link signaling systems in cellular pathologies. We found activation of toll-like receptor 3 (TLR3) triggers lysosomal ATP release from both astrocytes and retinal pigmented epithelial (RPE) cells. ATP efflux was accompanied by lysosomal acid phosphatase and beta hexosaminidase release.
View Article and Find Full Text PDFThe transient receptor potential cation channel mucolipin 1 (TRPML1) channel is a conduit for lysosomal calcium efflux, and channel activity may be affected by lysosomal contents. The lysosomes of retinal pigmented epithelial (RPE) cells are particularly susceptible to build-up of lysosomal waste products because they must degrade the outer segments phagocytosed daily from adjacent photoreceptors; incomplete degradation leads to accumulation of lipid waste in lysosomes. This study asks whether stimulation of TRPML1 can release lysosomal calcium in RPE cells and whether such release is affected by lysosomal accumulations.
View Article and Find Full Text PDFInflammatory responses play a key role in many neural pathologies, with localized signaling from the non-immune cells making critical contributions. The NLRP3 inflammasome is an important component of innate immune signaling and can link neural insult to chronic inflammation. The NLRP3 inflammasome requires two stages to contribute: priming and activation.
View Article and Find Full Text PDFMechanical strain in neural tissues can lead to the up-regulation and release of multiple cytokines including interleukin 6 (IL-6). In the retina, the mechanosensitive release of ATP can autostimulate P2X7 receptors on both retinal ganglion cell neurons and optic nerve head astrocytes. Here, we asked whether the purinergic signaling contributed to the IL-6 response to increased intraocular pressure (IOP) in vivo, and stretch or swelling in vitro.
View Article and Find Full Text PDFMechanical strain due to increased pressure or swelling activates inflammatory responses in many neural systems. As cytokines and chemokine messengers lead to both pro-inflammatory and neuroprotective actions, understanding the signaling patterns triggered by mechanical stress may help improve overall outcomes. While cytokine signaling in neural systems is often associated with glial cells like astrocytes and microglia, the contribution of neurons themselves to the cytokine response is underappreciated and has bearing on any balanced response.
View Article and Find Full Text PDFPurpose: The cellular mechanisms linking elevated IOP with glaucomatous damage remain unresolved. Mechanical strains and short-term increases in IOP can trigger ATP release from retinal neurons and astrocytes, but the response to chronic IOP elevation is unknown. As excess extracellular ATP can increase inflammation and damage neurons, we asked if sustained IOP elevation was associated with a sustained increase in extracellular ATP in the posterior eye.
View Article and Find Full Text PDFLysosomes contribute to a multitude of cellular processes, and the pH of the lysosomal lumen plays a central mechanistic role in many of these functions. In addition to controlling the rate of enzymatic degradation for material delivered through autophagic or phagocytotic pathways, lysosomal pH regulates events such as lysosomal fusion with autophagosomes and the release of lysosomal calcium into the cytoplasm. Disruption of either the steady state lysosomal pH or of the regulated manipulations to lysosomal pH may be pathological.
View Article and Find Full Text PDFAs adenosine 5'-triphosphate (ATP) released from astrocytes can modulate many neural signaling systems, the triggers and pathways for this ATP release are important. Here, the ability of mechanical strain to trigger ATP release through pannexin channels and the effects of sustained strain on pannexin expression were examined in rat optic nerve head astrocytes. Astrocytes released ATP when subjected to 5% of equibiaxial strain or to hypotonic swelling.
View Article and Find Full Text PDFLysosomal enzymes function optimally at low pH; as accumulation of waste material contributes to cell aging and disease, dysregulation of lysosomal pH may represent an early step in several pathologies. Here, we demonstrate that stimulation of the P2X7 receptor (P2X7R) for ATP alkalinizes lysosomes in cultured human retinal pigmented epithelial (RPE) cells and impairs lysosomal function. P2X7R stimulation did not kill RPE cells but alkalinized lysosomes by 0.
View Article and Find Full Text PDFLysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes.
View Article and Find Full Text PDFOptimal neuronal activity requires that supporting cells provide both efficient nutrient delivery and waste disposal. The incomplete processing of engulfed waste by their lysosomes can lead to accumulation of residual material and compromise their support of neurons. As most degradative lysosomal enzymes function best at an acidic pH, lysosomal alkalinization can impede enzyme activity and increase lipofuscin accumulation.
View Article and Find Full Text PDFThe role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells.
View Article and Find Full Text PDFMechanical deformation produces complex effects on neuronal systems, some of which can lead to dysfunction and neuronal death. While astrocytes are known to respond to mechanical forces, it is not clear whether neurons can also respond directly. We examined mechanosensitive ATP release and the physiological response to this release in isolated retinal ganglion cells.
View Article and Find Full Text PDFThe P2X(7) receptor is associated with the death of many cell types, and growing evidence supports its presence on neurons. Activation of the P2X(7) receptor on isolated retinal ganglion cells increases intracellular calcium levels and can kill the cells. Within the intact eye, however, glia and other cell types surrounding the ganglion cells may provide protection and attenuate the effects of receptor stimulation.
View Article and Find Full Text PDF