Publications by authors named "Wenmu Li"

Owing to low cost and high efficiency, nonprecious metal catalysts have been widely used in various types of fuel cells. To obtain a high-activity electrocatalyst, a simple method for the synthesis of iron-modified covalent triazine frameworks by the direct heating of a mixture of FeCl, ZnCl, ZnO, and -phthalodinitrile is reported. The role and a possible evolution pathway of the oxygen of metallic oxides are well discussed.

View Article and Find Full Text PDF
Article Synopsis
  • Green high-efficiency flame retardants (FRs) like HAMPP are important for modifying polymers to enhance their fire resistance.
  • HAMPP features a unique cyclic phosphorus structure that can carbonize during combustion, helping to prevent fires, and it has reactive groups for creating phosphorus-containing polymers.
  • Research shows that adding 10% HAMPP to flexible polyurethane foam significantly improved fire resistance, mechanical properties, and reduced heat release during burning.
View Article and Find Full Text PDF

Hierarchical iron-nitrogen-codoped porous hollow carbon spheres have been synthesized by using melamine-formaldehyde (MF) resin spheres as templates, nitrogen sources and pore-forming agents. FeCl3, 1,10-phenanthroline and carbon black were used as iron, nitrogen and carbon sources. The as-obtained porous hollow carbon spheres possess a high specific surface area of 807 m2 g-1, as well as exhibited excellent electrocatalytic activity for the oxygen reduction reaction (ORR) in both acidic and alkaline media.

View Article and Find Full Text PDF

Highly conductive anion exchange membranes (AEMs), along with the ability to suppress swelling, are critical but challenging requirements for alkaline fuel cell applications. To achieve this criterion, a series of poly(ether sulfone)s (PESFs) with flexible alkyl imidazolium pendants attached directly on large planar 6,12-bis(4-hydroxyphenyl)-5,11-dihydroindolo[3,2-b]carbazole (DCP) units is reported. The planar DCP units stabilize the hydrophobic phase through strong π-π interactions and also facilitate the formation of ionic conducting channels through self assembly of hydrophilic pendants.

View Article and Find Full Text PDF

Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and hierarchical porosity with well-conducting networks. The promising potential of NGPCs as metal-free electrocatalysts for oxygen reduction reactions (ORR) in fuel cells is demonstrated.

View Article and Find Full Text PDF

In the present work, we have designed and synthesized a new highly durable iron phtalocyanine based nonprecious oxygen reduction reaction (ORR) catalyst (Fe-SPc) for polymer electrolyte membrane fuel cells (PEMFCs). The Fe-SPc, with a novel structure inspired by that of naturally occurring oxygen activation catalysts, is prepared by a nonpyrolyzing method, allowing adequate control of the atomic structure and surface properties of the material. Significantly improved ORR stability of the Fe-SPc is observed compared with the commercial Fe-Pc catalysts.

View Article and Find Full Text PDF