Publications by authors named "Wenming Jia"

Head and neck squamous cell carcinoma (HNSCC) is notorious for poor prognoses, and effective biomarkers are urgently needed for early diagnosis of HNSCC patients. We investigate the role of alkaline ceramidase 1 (ACER1) and its relationship with immune infiltration in HNSCC. The differential expression and clinical prognostic significance of ACER1 in HNSCC patients are explored using bioinformatics methods and verified in human HNSCC samples.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSC) is the most common malignant tumor of head and neck. Due to the insidious nature of HNSC and the lack of effective early diagnostic indicators, the development of novel biomarkers to improve patient prognosis is particularly urgent. In this study, we explored and validated the correlation between cytochrome P450 family 4 subfamily F member 12 (CYP4F12) expression levels and HNSC progression using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and collected patient samples.

View Article and Find Full Text PDF

Background: Coiled-coil domain containing 60 (CCDC60) is a member of the CCDC family, which participates in the progression of many types of cancer. However, the prognostic value of CCDC60 in head and neck squamous cell carcinoma (HNSC) and its function in tumor immunity remain unclear.

Methods: CCDC60 expression and its prognostic potential in HNSC were evaluated by bioinformatics approaches, which was validated in human HNSC samples.

View Article and Find Full Text PDF

Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of head and neck squamous cell carcinoma (HNSCC) with poor prognosis. Metabolic reprogramming may regulate the tumor microenvironment (TME) by adapting quickly to cellular stress and regulating immune response, but its role in HSCC has not been reported. We used the nCounter Metabolic Pathways Panel to investigate metabolic reprogramming, cellular stress, and their relationship in HSCC tissues and adjacent normal tissues.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are highly conserved, non-coding transcripts that regulate gene expression in various ways. Evidence suggests that miRNAs may be a contributory factor in neurodegeneration, including Alzheimer's disease (AD), Parkinson's disease (PD), and triplet repeat disorders. In order to further understand the potential roles of miRNAs in the pathogenesis of AD, we analyzed Down syndrome (DS), a special model of AD, by using a TaqMan microRNA array and found that miRNA let-7c was up-regulated in both DS and AD.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive glioma, and is prone to develop resistance to chemotherapy and radiotherapy; hence, patients with glioblastoma have a high recurrence rate and a low 1-year survival rate. In addition, the pathogenesis of glioblastoma is complex and largely unknown, and the available treatments are limited. Here, we uncovered a fundamental role of DYRK1A in regulating NFATC1 in GBMs.

View Article and Find Full Text PDF

Background: G protein-coupled receptor 12 (GPR12) is an orphan receptor with no confirmed endogenous ligands. It plays important roles in both physiological and pathological conditions such as neurogenesis and neural inflammation. However, it remains unclear whether GPR12 regulates carcinogenesis and progression in head and neck squamous cell carcinoma (HNSCC), such as esophageal cancer (EC) and hypopharyngeal cancer (HC).

View Article and Find Full Text PDF

Aberrant expression and phosphorylation of insulin receptor substrate 1 (IRS-1) contribute to brain insulin resistance. However, the underlying mechanism remains elusive. The insulin signaling and Wnt/β-catenin signaling are two critical pathways for normal cellular function, which interact in both peripheral tissues and the brain and may contribute to insulin resistance.

View Article and Find Full Text PDF

Insulin resistance in the brain is a pathological mechanism that is shared between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Although aberrant expression and phosphorylation of insulin receptor substrate 1 (IRS-1) contribute to insulin resistance, the underlying mechanism remains elusive. In this study, we used several approaches, including adeno-associated virus-based protein overexpression, immunoblotting, immunoprecipitation, immunohistochemistry, and proximal ligation assays, to investigate the function of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) in IRS-1 regulation and the downstream insulin signaling in neurons.

View Article and Find Full Text PDF

Crustins are a family of cationic, cysteine-rich antimicrobial peptides with a whey acidic protein (WAP) domain in the C-terminal. They have diverse functions in antimicrobial immune responses. Four groups of crustins (crustins I, II, III, and IV) have been identified in crustaceans, but type I crustins have not been reported in penaeid shrimp until now.

View Article and Find Full Text PDF

Crustins are cationic cysteine-rich antimicrobial peptides (AMPs) that contain multiple domains (glycine-rich, cysteine-rich, or proline-rich) at the N-terminus and whey acidic protein (WAP) domains at the C-terminus. Crustins have multiple functions, including protease inhibition and antimicrobial activity. Other functions of crustins need to be clarified.

View Article and Find Full Text PDF

Anti-lipopolysaccharide factors (ALFs) are a group of critical effector molecules with a broad spectrum of antimicrobial activities in crustaceans. Four groups of ALFs (A, B, C, and D) have been identified in peneaid shrimp. In the study, we identified a new group of ALFs (designated as MjALF-E) from Marsupenaeus japonicus.

View Article and Find Full Text PDF

Calnexin (Cnx) is an endoplasmic reticulum membrane-bound lectin chaperone that comprises a dedicated maturation system with another lectin chaperone calreticulin (Crt). This maturation system is known as the Cnx/Crt cycle. The main functions of Cnx are Ca(2+) storage, glycoprotein folding, and quality control of synthesis.

View Article and Find Full Text PDF