Electrode materials with a hierarchical nanostructure derived from transition metal-based compounds is an important branch of energy storage materials and have attracted widespread attention in recent years. Herein, a Cu-Ni(OH)@CoO nanoflower cluster (Cu-Ni(OH)@CoO NFCs) heterojunction was successfully constructed by a simple two-step hydrothermal method in the presence of Co. The optimized Cu-Ni(OH)@CoO NFCs presented a high capacitive performance and outstanding cycle stability when used as a battery-type supercapacitive electrode material.
View Article and Find Full Text PDFDefective decidual function contributes to the pathogenesis of preeclampsia. However, the precise mechanism of defective decidua during preeclampsia has not been characterized. During decidualization, endometrial stromal cells undergo phenotypic changes that are consistent with mesenchymal-epithelial transition (MET).
View Article and Find Full Text PDFDue to their features of low cost, good corrosion resistance and environmental friendliness, transition metal oxides/nitrides are among the most promising materials for energy storage and conversion. Meanwhile, graphitic carbon nitride is a non-metallic polymer that has been widely used in the environmental and energy conversion fields due to its abundant precursor species and simple process of synthesis. In this study, an amorphous carbon nitride/NiO/CoN-based composite (Ni-Co-CN) is in situ fabricated via simple one-step pyrolysis; it displays high capacitive performance and efficient electrocatalytic capability for the oxygen evolution reaction (OER).
View Article and Find Full Text PDFHerein, alkali ion doped CaF2 upconversion nanoparticles (UCNPs) were first reported as a multifunctional theranostic platform for dual-modal imaging and chemotherapy. Interestingly, we found that the alkali ions doping approach could efficiently enhance the upconversion luminescence (UCL) intensity, whereas slightly affect the phase and morphology of the resulting products. In order to further improve the UCL efficacy for bioimaging, a pristine CaF2 shell was grown on the CaF2:Yb, Er core surface to enhance the UCL intensity.
View Article and Find Full Text PDFThe utilization of up-conversion nanoparticles (UCNPs) for photodynamic therapy (PDT) has gained significant interest due to their unique ability to convert near infrared light to UV/visible light. Previous work mainly focused on the fabrication of green and red emitting UCNPs to load photosensitizers (PSs) for PDT. In this work, we firstly developed a new multifunctional nanoplatform combining blue-emitting UCNPs with blue-light excited PS (hypocrellin A, HA) as a NIR photosensitizing nanoplatform for PDT of cancer cells.
View Article and Find Full Text PDFUpconverting nanoparticles (UCNPs) have attracted considerable attention as potential photosensitizer carriers for photodynamic therapy (PDT) in deep tissues. In this work, a new and efficient NIR photosensitizing nanoplatform for PDT based on red-emitting UCNPs is designed. The red emission band matches well with the efficient absorption bands of the widely used commercially available photosensitizers (Ps), benefiting the fluorescence resonance energy transfer (FRET) from UCNPs to the attached photosensitizers and thus efficiently activating them to generate cytotoxic singlet oxygen.
View Article and Find Full Text PDFUnder 980 nm near-infrared (NIR) excitation, upconversion luminescent (UCL) emission of GdF(3):Yb,Er upconversion nanoparticles (UCNPs) synthesized by a simple and green hydrothermal process can be tuned from yellow to red by varying the concentration of dopant Li(+) ions. A possible mechanism for enhanced red upconverted radiation is proposed. A layer of silica was coated onto the surface of GdF(3):Yb,Er,Li UCNPs to improve their biocompatibility.
View Article and Find Full Text PDFHere, dual-modal bioprobes for combined optical and magnetic resonance (MR) imaging are reported. Gadolinium orthophosphate (GdPO(4)) nanorods co-doped with light-emitting lanthanide ions have been successfully prepared through a hydrothermal method. An efficient downconversion luminescence from Ce/Tb or Eu doped GdPO(4) nanorods and upconversion luminescence from Yb/Er co-doped GdPO(4) nanorods are observed, respectively, which offers the optical modality for the nanoprobes.
View Article and Find Full Text PDFPure dark red emission (650-670 nm) of NaYF(4):Yb/Er upconversion nanoparticles (UCNPs) is achieved by manganese ions (Mn(2+)) doping. In addition, the Mn(2+)-doping can also control the crystalline phase and size of the resulting UCNPs simultaneously. Drug delivery studies suggest the promise of these UCNPs as drug carriers for intracellular drug delivery and eventually as a multifunctional nanoplatform for simultaneous diagnosis and therapy.
View Article and Find Full Text PDF