High-performance insulating materials are essential for developing lightweight, compact, and green offshore wind power equipment. It has been shown that nanoporous structures can limit the development of electron avalanche, leading to a significant increase in the breakdown electric strength of dielectrics. Hence, we fabricated a polysiloxane nanoporous biopolymer insulating material (PNBIM) with the nanoporous structure that presents exceptionally high electrically insulating properties.
View Article and Find Full Text PDFThe long-term operation of power equipment and power electronics can cause local overheating and discharges in the insulation material, resulting in irreversible insulation damage. Further development of such damage can eventually lead to equipment failure, but this problem is very difficult to solve. In this paper, inspired by how the petals of morning glory change color with the environment due to the presence of pigmented globules, a dual-function heat alert in the form of a self-healing (HASH) microcapsule with a nested structure is prepared by using microfluidic technology.
View Article and Find Full Text PDFWith global enforcement of plastic bans and restrictions, the biodegradable plastic, e.g., polylactic acid (PLA), has been extensively employed as a primary substitute for traditional petroleum-based plastics.
View Article and Find Full Text PDFIn this paper, a resin with high adhesion, easy curing, good flexibility, and high temperature resistance was prepared from polyimide fiber paper. First, in order to improve the toughness and curability of impregnating resin, epoxy resin was modified by addition of vinyl silicone resin. Subsequently, ternary resin with high temperature stability was obtained by polyimide resin addition.
View Article and Find Full Text PDF