The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images.
View Article and Find Full Text PDFIntravascular optical coherence tomography (IVOCT) is an imaging method that has developed rapidly in recent years and is useful in coronary atherosclerosis diagnosis. It is widely used in the assessment of vulnerable plaque. This review summarizes the main research methods used in recent years for blood vessel lumen boundary detection and segmentation and vulnerable plaque segmentation and classification.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is often used to diagnose diseases due to its high spatial, temporal and soft tissue resolution. Frequently, probes or contrast agents are used to enhance the contrast in MRI to improve diagnostic accuracy. With the development of molecular imaging techniques, molecular MRI can be used to obtain 3D anatomical structure, physiology, pathology, and other relevant information regarding the lesion, which can provide an important reference for the accurate diagnosis and treatment of the disease in the early stages.
View Article and Find Full Text PDF