Publications by authors named "Wenlin An"

Exosomes have garnered significant attention in the realms of disease diagnosis and therapeutics, owing to their remarkable biocompatibility. While engineered exosomes have the potential to augment delivery efficiency, targeting specificity, and circulation longevity, the intricacies of sample preparation have often hindered their broader application. In this pioneering study, we introduce a novel nanoplatform by leveraging surface manganese dioxide (MnO) mineralization of milk exosomes.

View Article and Find Full Text PDF
Article Synopsis
  • - Metabolic processes are crucial in cancer biology, particularly as cancer cells have a higher glucose metabolism rate, often using aerobic glycolysis to meet their growth needs and maintain redox balance.
  • - Although targeting glucose metabolism has led to cancer treatments, issues like poor drug stability, rapid clearance, and inadequate target site delivery limit their effectiveness.
  • - The review focuses on innovations in nanomedicine to enhance drug delivery by employing nanotechnology, which could improve treatment outcomes and tackle the resistance common in existing cancer therapies.
View Article and Find Full Text PDF

Exosomes are small membrane vesicles in a cell culture. They are secreted by most cells and originate from the endosomal pathway. A variety of proteins, lipids, and genetic materials have been shown to be carried by exosomes.

View Article and Find Full Text PDF

With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues.

View Article and Find Full Text PDF

In recent years, small extracellular vesicles (sEVs) have been regarded as the next generation of novel delivery systems after lipid nanoparticles because of their advantages and huge prospects in drug delivery. Studies have shown that sEVs are abundant in milk and therefore can be a large and economical source of sEVs. Natural milk-derived small extracellular vesicles (msEVs) have important functions such as immune regulation, anti-bacterial infection, anti-oxidative, etc.

View Article and Find Full Text PDF

Diabetes is the most prevalent metabolic disease in the world today. In addition to elevated blood glucose, it also causes serious complications, which has a significant effect on the quality of life of patients. Diabetic trauma is one of complications as a result of the interaction of diabetic neuropathy, peripheral vascular disease, infection, trauma, and other factors.

View Article and Find Full Text PDF

The Coronavirus disease 2019 (COVID-19) has posed a serious threat to global health and the world economy. Antiviral therapies targeting coronavirus are urgently required. The Cepharanthine (CEP) is a traditional Chinese herbal extract.

View Article and Find Full Text PDF

Circular RNA (circRNA) is a novel endogenous non-coding RNA (ncRNA) that, like microRNA (miRNA), is a rapidly emerging RNA research topic. CircRNA, unlike traditional linear RNAs (which have 5' and 3' ends), has a closed-loop structure that is unaffected by RNA exonucleases. Thus, circRNA has sustained expression and is less sensitive to degradation.

View Article and Find Full Text PDF

Most of the naked drugs, including small molecules, inorganic agents, and biomacromolecule agents, cannot be used directly for disease treatment because of their poor stability and undesirable pharmacokinetic behavior. Their shortcomings might seriously affect the exertion of their therapeutic effects. Recently, a variety of exogenous and endogenous nanomaterials have been developed as carriers for drug delivery.

View Article and Find Full Text PDF

, as one of the major players in algal bloom, produces microcystins, which are strongly hepatotoxic, endangering human health and damaging the ecological environment. Biological control of the overgrowth of with cyanophage has been proposed to be a promising solution for algal bloom. In this study, a novel strain of cyanophage, MinS1, was isolated.

View Article and Find Full Text PDF

Cyanobacteria are autotrophic prokaryotes that can proliferate robustly in eutrophic waters through photosynthesis. This can lead to outbreaks of lake "water blooms", which result in water quality reduction and environmental pollution that seriously affect fisheries and aquaculture. The use of cyanophages to control the growth of cyanobacteria is an important strategy to tackle annual cyanobacterial blooms.

View Article and Find Full Text PDF

Tremendous advances in the field of synthetic biology have been witnessed in multiple areas including life sciences, industrial development, and environmental bio-remediation. However, due to the limitations of human understanding in the code of life, any possible intended or unintended uses of synthetic biology, and other unknown reasons, the development and application of this technology has raised concerns over biosafety, biosecurity, and even cyberbiosecurity that they may expose public health and the environment to unknown hazards. Over the past decades, some countries in Europe, America, and Asia have enacted laws and regulations to control the application of synthetic biology techniques in basic and applied research and this has resulted in some benefits.

View Article and Find Full Text PDF

Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core.

View Article and Find Full Text PDF

Asthma is a common respiratory immune disease in children and adults, and interleukin-4 (IL-4) is one of the key factors for the onset of asthma. Therefore, targeting human IL-4 and IL-4 receptor alpha (IL-4RA) has become one of the strategies for targeted therapy of cytokines. Herein, we established an animal model of asthmatic airway inflammation using double humanized IL-4/IL-4RA (hIL-4/hIL-4RA) mice, where human IL-4 and IL-4RA replaced their murine counterparts, respectively.

View Article and Find Full Text PDF

Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI) with a destabilizing domain (DD) specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be limited by functional interference of the DD epitope with electrostatic interactions required for full biological function of proteins.

View Article and Find Full Text PDF

Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons.

View Article and Find Full Text PDF

Here, we describe a route orthogonal gene expression which combines orthogonal transcription and translation using library-based selections. We show how orthogonal gene expression can be used to create a minimal orthogonal ribosome and describe how to create orthogonal transcription-translation feed forward loops that introduce tailored information processing delays into gene expression.

View Article and Find Full Text PDF

Precise photochemical control of protein function can be achieved through the site-specific introduction of caging groups. Chemical and enzymatic methods, including in vitro translation and chemical ligation, have been used to photocage proteins in vitro. These methods have been extended to allow the introduction of caged proteins into cells by permeabilization or microinjection, but cellular delivery remains challenging.

View Article and Find Full Text PDF

Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue.

View Article and Find Full Text PDF

Orthogonal, parallel and independent, systems are one key foundation for synthetic biology. The synthesis of orthogonal systems that are uncoupled from evolutionary constraints, and selectively abstracted from cellular regulation, is an emerging approach to making biology more amenable to engineering. Here, we combine orthogonal transcription by T7 RNA polymerase and translation by orthogonal ribosomes (O-ribosomes), creating an orthogonal gene expression pathway in Escherichia coli.

View Article and Find Full Text PDF

Currently, we found that the 70-kDa p70 S6 kinase (p70S6K) directly phosphorylates tau at S262, S214, and T212 sites in vitro. By immunoprecipitation, p-p70S6K (T421/S424) showed a close association with p-tau (S262 and S396/404). Zinc-induced p70S6K activation could only upregulate translation of total S6 and tau but not global proteins in SH-SY5Y cells.

View Article and Find Full Text PDF

Zinc levels are increased in brain areas severely affected by Alzheimer's disease (AD) pathologies. Zinc has both protective and neurotoxic properties and can stimulate both phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Several kinases related to these pathways including protein kinase B (PKB), p70 S6 kinase (p70S6K), and extracellular signal-regulated kinase 1/2 (ERK1/2) are known cell survival factors and are overactivated in neurons bearing neurofibrillary tangles (NFTs) in AD.

View Article and Find Full Text PDF

We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells.

View Article and Find Full Text PDF

Eukaryotic translation factor 4E (eIF4E) plays a key role in regulating protein translation. It was thought that in order to maintain neuronal functions, tau protein is continuously generated to compensate those being hyperphosphorylated and compromised in its ability to promote and maintain microtubule assembly in Alzheimer's disease. If eIF4E is involved in tau mRNA translation, level of eIF4E phosphorylation should be changed.

View Article and Find Full Text PDF

In Alzheimer's disease (AD) brain the activity of protein phosphatase (PP)-2A is compromised and that of the extracellular signal-regulated protein kinase (ERK1/2) of the mitogen-activated protein kinase (MAPK) family, which can phosphorylate tau, is up-regulated. We investigated whether a decrease in PP-2A activity could underlie the activation of these kinases and the abnormal hyperphosphorylation of tau. Rat brain slices, 400-microm-thick, kept under metabolically active conditions in oxygenated (95% O(2), 5% CO(2)) artificial CSF were treated with 1.

View Article and Find Full Text PDF