The prevalence of breast cancer among women has led to a growing need for innovative anti-breast cancer medications and an in-depth investigation into their molecular mechanisms of action, both of which are essential tactics in clinical intervention. In the clinical practice of Traditional Chinese Medicine, and its active components have shown promise as potential anti-breast cancer agents due to their ability to target multiple pathways, exhibit synergistic effects and reduce toxicity. These compounds are considered to enhance the prognosis of patients with cancer, prolong survival and combat chemotherapy resistance.
View Article and Find Full Text PDFBackground: Genome-wide association studies (GWASs) have identified 38 loci associated with ulcerative colitis (UC) susceptibility, but the risk genes and their biological mechanisms remained to be comprehensively elucidated.
Methods: Multi-marker analysis of genomic annotation (MAGMA) software was used to annotate genes on GWAS summary statistics of UC from FinnGen database. Genetic analysis was performed to identify risk genes.
IEEE Trans Pattern Anal Mach Intell
November 2024
Generating realistic 3D human motion has been a fundamental goal of the game/animation industry. This work presents a novel transition generation technique that can bridge the actions of people in the foreground by generating 3D poses and shapes in-between photos, allowing 3D animators/novice users to easily create/edit 3D motions. To achieve this, we propose an adaptive motion network (ADAM-Net) that effectively learns human motion from masked action sequences to generate kinematically compliant 3D poses and shapes in-between given temporally-sparse photos.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) has been widely used as a sensitive molecular spectroscopy technology in food safety detection. Precise morphology control of plasmonic nanoparticles for high sensitivity and high uniformity SERS substrates remains challenging. Herein, silver decahedral nanoparticles (AgDeNPs) with uniform and adjustable sizes were synthesized by a photochemical seed-mediated method and utilized as SERS substrates for pesticide residue detection.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2022
University library spaces play an important role in the learning experience of students. However, the traditional designs for these learning spaces no longer meet the needs of users, and researchers have been turning their attention to university library space renovation. By combing existing theories and practices, this study determined a framework of six university library space renovation design principles and subsequently conducted a survey to examine university library space user learning experience in two university libraries in Wuhan, China.
View Article and Find Full Text PDFSichuan industrial paocai and traditional home-made paocai have different aroma profiles due to different manufacturing techniques, but detailed information about the aroma profiles and aroma-producing microorganism of Sichuan industrial paocai remain largely elusive. For this reason, we established and validated an external standard method of headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) combined with gas chromatography-olfactometry (GC-O) for identification and accurate quantitation of aroma-active compounds in Sichuan industrial paocai. This method was combined with 16S rRNA amplicon sequencing to comprehensively analyze the aroma and bacteria profiles of Sichuan industrial paocai.
View Article and Find Full Text PDFRemarkable chiral amplification in plasmon-coupled circular dichroism spectroscopy (CD) is demonstrated by using discrete Ag nanorods as amplifiers. An unprecedented CD enhancement factor of over 3000 times is achieved without resonant or near-resonant exciton-plasmon couplings.
View Article and Find Full Text PDFConductive supports could improve the electrical conductivity of the electrode in lithium-sulfur (Li-S) batteries but suffer from the shuttle effect originated from the polysulfide dissolution, while the hydrophilic metal oxides could avoid the shuttle effect but with poor conductivity. Herein, a facile approach was developed to fabricate hierarchically porous tin oxide (SnO) nanoparticle-anchored tubular polypyrrole (T-PPy) as a sulfur host, in order to integrate the advantages of conductive supports and metal oxides but overcome their shortcomings. In the unique structure, the T-PPy nanotubes acted as a conductive network to not only improve the electrical conductivity of cathodes but also accommodate the volume expansion of the sulfur cathode during cycling as well as relatively confine the polysulfide diffusion, while the SnO nanoparticles served as a high-efficient polysulfide trap to mitigate the shuttle effect due to the chemical bond between SnO and polysulfides.
View Article and Find Full Text PDFRechargeable lithium-sulfur batteries have emerged as a viable technology for next generation electrochemical energy storage, and the sulfur cathode plays a critical role in determining the device performance. In this study, we prepared functional composites based on polypyrrole-coated MnO nanotubes as a highly efficient sulfur host (sulfur mass loading 63.5%).
View Article and Find Full Text PDFWell-defined core-shell structured coaxial sulfur/polypyrrole tubular nanocomposites, polypyrrole nanotubes wrapped by uniform rough sulfur layers, were fabricated as Li-S battery cathodes via a facile one-pot method. In the designed structure, the polypyrrole backbone can facilitate the charge transport and also restrain the soluble polysulfide diffusion, while the active sulfur layer can efficiently react with Li+ assisted by the PPy nanotubes, and the lithium polysulfides can be massively trapped by the PPy nanotubes during charge-discharge processes. The as-prepared coaxial sulfur/polypyrrole tubular nanocomposites with a sulfur loading of 53.
View Article and Find Full Text PDFHierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets is fabricated by a facile hydrothermal process with the existence of trimesic acid and nickel ions. Various structures of Ni-MOFs can be obtained through adjusting the molar ratio of trimesic acid and nickel ion, the obtained hierarchical porous Ni-MOF exhibits optimal porous structure, which also possesses largest specific surface area. The hierarchical porous structure constructed with nanosheets can supply more active sites for electrochemical reactions to realize the excellent electrochemical properties, thus the hierarchical porous Ni-MOF reveals an outstanding specific capacitance of 1057 F/g at current density of 1 A/g, and delivers high specific capacitance of 649 F/g at current density of 30 A/g, indicating that it exhibits good rate capability of 63.
View Article and Find Full Text PDFPolyaniline coated reduced graphene oxide/carbon nanotube composite fibers ((RGO/CNTs)@PANI, RCP) with skeleton/skin structure are designed as fiber-shaped electrodes for high performance all-solid-state symmetric supercapacitor. The one-dimensional reduced graphene oxide/carbon nanotube composite fibers (RGO/CNTs, RC) are prepared via a simple in-situ reduction of graphene oxide in presence of carbon nanotubes in quartz glass pipes, which exhibit excellent mechanical performance of >193.4 MPa of tensile strength.
View Article and Find Full Text PDFThe free-standing polyaniline (PANI)-based composite film electrodes were prepared with polyvinyl chloride (PVC) and the aniline modified PVC (PVC-An) films as flexible substrates for supercapacitors, via facile in-situ chemical oxidative polymerization of aniline, with conventional chemical oxidative polymerization or rapid-mixing chemical oxidative polymerization technique. Owing to the grafting of PANI from the PVC-An film as substrate and the suppression of the secondary growth of the primary PANI particles in the rapid-mixing chemical oxidative polymerization, the PVC-g-PANI-2 composite film with loose surface possessed better comprehensive performance, accompanying the high specific capacitance (645.3F/g at a current density of 1A/g), good rate capacitance (retaining 63.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2017
Facile one-step ultrasonic-assisted chemical precipitation strategy has been developed for the mass production of SnO nanomaterials with different morphologies. As anode material for lithium-ion batteries, the nanoporous SnO nanosheets exhibited an extremely high initial specific capacity of 2231mAh/g in comparison with 1242mAh/g of the SnO microcrystals and 1244mAh/g of the nanoporous SnO nanoflowers. Meanwhile the nanoporous SnO nanosheet electrode displayed a specific capacity of 688mAh/g after 60 cycles at 0.
View Article and Find Full Text PDFThis paper is concerned with the simulation and experimental study of hydraulic characteristics in a pilot Carrousel oxidation ditch for the optimization of submerged depth ratio of surface aerators. The simulation was based on the large eddy simulation with the Smagorinsky model, and the velocity was monitored in the ditches with an acoustic Doppler velocimeter method. Comparisons of the simulated velocities and experimental ones show a good agreement, which validates that the accuracy of this simulation is good.
View Article and Find Full Text PDFBackground: Consequences of traumatic brain injury underscore the need to study high-risk groups. Few studies have investigated work-related traumatic brain injuries (WrTBIs) in the construction industry.
Objective: To examine WrTBIs in Ontario for the construction industry compared to other industries.
Objective: Workplace falls are a common cause of head injuries; however, detailed study of this is limited. The objective of the study was to examine the person, environment and occupation factors associated with work-related traumatic brain injuries (WrTBI) due to falls from elevation (FFE) and falls from the same level (FFSL).
Methods: This study is a retrospective chart review.
Proc Natl Acad Sci U S A
October 2007
Exposure to low Ca(2+) and/or Mg(2+) is tolerated by cardiac myocytes, astrocytes, and neurons, but restoration to normal divalent cation levels paradoxically causes Ca(2+) overload and cell death. This phenomenon has been called the "Ca(2+) paradox" of ischemia-reperfusion. The mechanism by which a decrease in extracellular Ca(2+) and Mg(2+) is "detected" and triggers subsequent cell death is unknown.
View Article and Find Full Text PDFNMDA receptor function is modulated by both G-protein-coupled receptors and receptor tyrosine kinases. In acutely isolated rat hippocampal neurons, direct activation of the platelet-derived growth factor (PDGF) receptor or transactivation of the PDGF receptor by D4 dopamine receptors inhibits NMDA-evoked currents in a phospholipase C (PLC)-dependent manner. We have investigated further the ability of D2-class dopamine receptors to modulate NMDA-evoked currents in isolated rat prefrontal cortex (PFC).
View Article and Find Full Text PDFCa2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined.
View Article and Find Full Text PDFExcitotoxicity in brain ischemia triggers neuronal death and neurological disability, and yet these are not prevented by antiexcitotoxic therapy (AET) in humans. Here, we show that in neurons subjected to prolonged oxygen glucose deprivation (OGD), AET unmasks a dominant death mechanism perpetuated by a Ca2+-permeable nonselective cation conductance (IOGD). IOGD was activated by reactive oxygen/nitrogen species (ROS), and permitted neuronal Ca2+ overload and further ROS production despite AET.
View Article and Find Full Text PDFThe effects of extracellular pH (pHo) on calcium-sensing non-selective cation (csNSC) channels in cultured mouse hippocampal neurons were investigated using whole-cell voltage-clamp and current-clamp recordings. Decreasing extracellular Ca2+ concentrations ([Ca2+]o) activated slow and sustained inward currents through the csNSC channels. Decreasing pHo activated amiloride-sensitive transient proton-gated currents which decayed to baseline in several seconds.
View Article and Find Full Text PDF