Publications by authors named "Wenli Hong"

Background: Chronic low-grade inflammation and ovarian germline stem cells (OGSCs) aging are important reasons for the decline of ovarian reserve function, resulting in ovarian aging and infertility. Regulation of chronic inflammation is expected to promote the proliferation and differentiation of OGSCs, which will become a key means for maintaining and remodeling ovarian function. Our previous study demonstrated that Chitosan Oligosaccharides (Cos) promoted the OGSCs proliferation and remodelled the ovarian function through improving the secretion of immune related factors,but the mechanism remains unclear, and the role of macrophages, the important source of various inflammatory mediators in the ovary needs to be further studied.

View Article and Find Full Text PDF

Introduction: Polycystic Ovary Syndrome (PCOS) is the most common reproductive endocrine disorder among women of reproductive age, which is one of the main causes of anovulatory infertility. Even though the rapidly developed assisted reproductive technology (ART) could effectively solve fertility problems, some PCOS patients still have not obtained satisfactory clinical outcomes. The poor quality of oocytes caused by the abnormal follicular development of PCOS may directly contribute to the failure of ART treatment.

View Article and Find Full Text PDF

The delay of ovarian aging and the fertility preservation of cancer patients are the eternal themes in the field of reproductive medicine. Acting as the pacemaker of female physiological aging, ovary is also considered as the principle player of cancer, cardiovascular diseases, cerebrovascular diseases, neurodegenerative diseases and etc. However, its aging mechanism and preventive measures are still unclear.

View Article and Find Full Text PDF

Objective: This study elucidates the potential therapeutic targets and molecular mechanisms of KTC in the treatment of PCOS.

Materials And Methods: Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the active ingredients and potential targets of KTC were obtained. The Gene Expression Omnibus (GEO) database was used to find differentially expressed genes (DEGs) related to PCOS.

View Article and Find Full Text PDF

Oocyte maturation disorder and decreased quality are the main causes of infertility in women, and granulosa cells (GCs) provide the only microenvironment for oocyte maturation through autocrine and paracrine signaling by steroid hormones and growth factors. However, chronic inflammation and oxidative stress caused by ovarian hypoxia are the largest contributors to ovarian aging and GC dysfunction. Therefore, the amelioration of chronic inflammation and oxidative stress is expected to be a pivotal method to improve GC function and oocyte quality.

View Article and Find Full Text PDF

Intrauterine adhesions (IUAs) caused by mechanical damage or infection increase the risk of infertility in women. Although numerous physical barriers such as balloon or hydrogel are developed for the prevention of IUAs, the therapeutic efficacy is barely satisfactory due to limited endometrial healing, which may lead to recurrence. Herein, a second near-infrared (NIR-II) light-responsive shape memory composite based on the combination of cuprorivaite (CaCuSi O ) nanosheets (CUP NSs) as photothermal conversion agents and polymer poly(d,l-lactide-co-trimethylene carbonate) (PT) as shape memory building blocks is developed.

View Article and Find Full Text PDF

The ovary is surrounded by a whitish layer of mesodermally derived ovarian surface epithelium (OSE) that lines the intraembryonic celom and comprises simple squamous to cuboidal to low pseudostratified columnar epithelial cells. Its integrity is maintained by simple desmosomes, incomplete tight junctions, several integrins and cadherins. Recent research has found that ovarian stem cells (OSCs) exist within the OSE and may be responsible for both neo-oogenesis and ovarian cancer during adult life.

View Article and Find Full Text PDF