Our previous study has shown that neutrophil extracellular traps (NETs) were associated with idiopathic inflammatory myopathy-related interstitial lung disease (IIM-ILD). Colchicine plays an anti-inflammatory role mainly by inhibiting the activity and chemotaxis of neutrophils. This study aims to verify therapeutic effects and mechanism of colchicine in IIM-ILD.
View Article and Find Full Text PDFOur group previously demonstrated that NETs were involved in interstitial lung diseases (ILD) among patients with idiopathic inflammatory myopathies (IIM) and the experimental autoimmune myositis (EAM) mouse model and that NETs activated lung fibroblasts through the TLR9-miR7-Smad2 axis. This study aimed to establish a novel mouse model of myositis-associated interstitial lung disease (MAILD) by using a TLR9 agonist (ODN2395). ODN2395 and muscle homogenate were used to induce MAILD in BALB/c mice.
View Article and Find Full Text PDFExcessive formation of neutrophil extracellular traps (NETs) may lead to myositis-related interstitial lung disease (ILD). There is evidence that NETs can directly injure vascular endothelial cells and play a pathogenic role in the inflammatory exudation of ILD. However, the specific mechanism is unclear.
View Article and Find Full Text PDFThe excessive formation of neutrophil extracellular traps (NETs) has been demonstrated to be a pathogenic mechanism of idiopathic inflammatory myopathy (IIM)-associated interstitial lung disease (ILD). This study aimed to answer whether an experimental autoimmune myositis (EAM) model can be used to study IIM-ILD and whether NETs participate in the development of EAM-ILD. An EAM mouse model was established using skeletal muscle homogenate and pertussis toxin (PTX).
View Article and Find Full Text PDFIdiopathic inflammatory myopathies (IIMs) are a group of systemic autoimmune diseases characterized by immune-mediated muscle injury. Abnormal neutrophil extracellular traps (NETs) can be used as a biomarker of IIM disease activity, but the mechanism of NET involvement in IIMs needs to be elucidated. Important components of NETs, including high-mobility group box 1, DNA, histones, extracellular matrix, serum amyloid A, and S100A8/A9, act as damage-associated molecular patterns (DAMPs) to promote inflammation in IIMs.
View Article and Find Full Text PDFThe exploration of advanced water treatment technologies e.g. heterogeneous photocatalysis is the most promising way to address organic pollution issues.
View Article and Find Full Text PDF