Publications by authors named "Wenlan Guo"

Nanoparticles have become widely used materials in various fields, yet their mechanism of action at the cellular level after entering the human body remains unclear. Accurately observing the effect of nanosize dimensions on particle internalization and toxicity in cells is crucial, particularly under the conditions of biological activity. With the aim of helping to study the interactions between nanoparticles of varying sizes and active cell membranes, we propose a flexible biosensor system based on a field effect transistor (FET).

View Article and Find Full Text PDF

Current microflow cytometers suffer from complicated fluidic integration and low fluorescence collection efficiency, resulting in reduced portability and sensitivity. Herein, we demonstrated a new flow cell design based on an on-chip monolithically integrated microreflector with a bulk acoustic wave resonator (MBAW). It enables simultaneous 3D particle focusing and fluorescence enhancement without using shear flow.

View Article and Find Full Text PDF

Micro gas chromatography (μGC) using microfabricated silicon columns has been developed in response to the requirement for portable on-site gas analysis. Although different stationary phases have been developed, repeatable and reliable surface coatings in these rather small microcolumns remains a challenge. Herein, a new stationary phase coating strategy using magnetic beads (MBs) as carriers for micro column is presented.

View Article and Find Full Text PDF

Atomically thin two-dimensional (2D) materials are ideal gas sensing materials for achieving an ultra-low detection limit, due to the high surface-to-volume ratio, low electronic noise and sensitively tunable Fermi level. However, the sensitivity of 2D materials to their surrounding environment may also severely degrade the long-term stability of sensing devices, since most of them use the same 2D material flake as both the sensing and conduction material. In this work, we report a gas sensor based on a 2D material field effect transistor (FET) which uses few-layer black phosphorus (BP), boron nitride (BN) and molybdenum disulfide (MoS) as the top-gate, dielectric layer and conduction channel, respectively.

View Article and Find Full Text PDF

We demonstrate a dual-mode gas sensor for simultaneous and independent acquisition of electrical and mechanical signals from the same gas adsorption event. The device integrates a graphene field-effect transistor (FET) with a piezoelectric resonator in a seamless manner by leveraging multiple structural and functional synergies. Dual signals resulting from independent physical processes, i.

View Article and Find Full Text PDF