Publications by authors named "Wenk G"

Introduction. During 2020 and 2021, the circulation of influenza virus remained below expectations worldwide. In Argentina, in 2022, we observed an uninterrupted circulation of influenza all year round.

View Article and Find Full Text PDF

Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD.

View Article and Find Full Text PDF

The second wave of COVID-19 occurred in South America in early 2021 and was mainly driven by Gamma and Lambda variants. In this study, we aimed to describe the emergence and local genomic diversity of the SARS-CoV-2 Lambda variant in Argentina, from its initial entry into the country until its detection ceased. Molecular surveillance was conducted on 9356 samples from Argentina between October 2020 and April 2022, and sequencing, phylogenetic, and phylogeographic analyses were performed.

View Article and Find Full Text PDF

During the pandemic of COVID-19, numerous waves of infections affected the two hemispheres with different impacts on each country. Throughout these waves, and with the emergence of new variants, health systems and scientists have tried to provide real-time responses to the complex biology of SARS-CoV-2, dealing with different clinical presentations, biological characteristics, and clinical impact of these variants. In this context, knowing the extent period in which an infected individual releases infectious viral particles has important implications for public health.

View Article and Find Full Text PDF

Stopping the spread of coronavirus disease 2019 (COVID-19) is critical and can be achieved through rapid and effective detection techniques. Our objective was to compare the diagnostic accuracy of rapid antigen tests (RAgT) and reverse transcriptionquantitative polymerase chain reaction (RT-qPCR) and to describe amplification cycle thresholds (Cts). Participants were children aged 1 month to 11 years with symptoms for less than 7 days, who did not have a detectable result in the past 90 days, and were immunocompetent.

View Article and Find Full Text PDF

For over a century, neurons have been considered the basic functional units of the brain while glia only elements of support. Activation of glia has been long regarded detrimental for survival of neurons but more it appears that this is not the case in all circumstances. In this review, we report and discuss the recent literature on the alterations of astrocytes and microglia during inflammaging, the low-grade, slow, chronic inflammatory response that characterizes normal brain aging, and in acute inflammation.

View Article and Find Full Text PDF

It is the main goal of this study to investigate the concordance of a decision support system and the recommendation of spinal surgeons regarding back pain. 111 patients had to complete the decision support system. Furthermore, their illness was diagnosed by a spinal surgeon.

View Article and Find Full Text PDF

Aging and neurodegenerative diseases share a condition of neuroinflammation entailing the production of endogenous cell debris in the CNS that must be removed by microglia ( i.e., resident macrophages), to restore tissue homeostasis.

View Article and Find Full Text PDF

The hippocampus is negatively affected by aging and neurodegenerative diseases leading to impaired learning and memory abilities. A diverse series of progressive modifications in the intercellular communication among neurons, astrocytes and microglia occur in the hippocampus during aging or inflammation. A detailed understanding of the neurobiological modifications that contribute to hippocampal dysfunction may reveal new targets for therapeutic intervention.

View Article and Find Full Text PDF

The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway.

View Article and Find Full Text PDF

We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis.

View Article and Find Full Text PDF

Alterations of the tightly interwoven neuron/astrocyte interactions are frequent traits of aging, but also favor neurodegenerative diseases, such as Alzheimer disease (AD). These alterations reflect impairments of the innate responses to inflammation-related processes, such as β-amyloid (Aβ) burdening. Multidisciplinary studies, spanning from the tissue to the molecular level, are needed to assess how neuron/astrocyte interactions are influenced by aging.

View Article and Find Full Text PDF

The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory.

View Article and Find Full Text PDF

Background: Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation.

View Article and Find Full Text PDF

Neuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium (Ca(+2)) homoeostasis via L-type voltage dependent calcium channels (L-VDCCs) and ryanodine receptors (RyRs). Alterations in Ca(+2) channel activity in the SN and LC can lead to disruption of normal pacemaking activity in these areas, contributing to behavioral deficits.

View Article and Find Full Text PDF

Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging.

View Article and Find Full Text PDF

Degeneration of specific neuronal populations and progressive nervous system dysfunction characterize neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. These findings are also reported in inherited diseases such as phenylketonuria and glutaric aciduria type I. The involvement of mitochondrial dysfunction in these diseases was reported, elicited by genetic alterations, exogenous toxins or buildup of toxic metabolites.

View Article and Find Full Text PDF

Chronic neuroinflammation is characteristic of neurodegenerative diseases and is present during very early stages, yet significant pathology and behavioral deficits do not manifest until advanced age. We investigated the consequences of experimentally-induced chronic neuroinflammation within the hippocampus and brainstem of young (4 mo) F-344 rats. Lipopolysaccharide (LPS) was infused continuously into the IV ventricle for 2, 4 or 8 weeks.

View Article and Find Full Text PDF

The pro-inflammatory cytokine IL-1β is known to play a role in several models of aging, neuroinflammation, and neurodegenerative diseases. Here, we document a detailed time- and age-dependent pattern of pro- and anti-inflammatory biomarkers following bilateral intrahippocampal injection of interleukin-1β. During the first 12h several pro- and anti-inflammatory cytokines increased in the aged (24 mo old) rats, some of which returned to baseline levels by 24h post-injection while others remained elevated for 72 h post-injection.

View Article and Find Full Text PDF

Neuroinflammation and degeneration of ascending catecholaminergic systems occur early in the neurodegenerative process. Age and the duration of a pro-inflammatory environment induced by continuous intraventricular lipopolysaccharide (LPS) differentially affect the expression profile of pro- and anti-inflammatory genes and proteins as well as the number of activated microglia (express major histocompatibility complex II; MHC II) and the integrity and density of ascending catecholaminergic neural systems originating from the locus coeruleus (LC) and substantia nigra pars compacta (SNpc) in rats. LPS infusion increased gene expression and/or protein levels for both pro- and anti-inflammatory biomarkers.

View Article and Find Full Text PDF

Impaired memory may result from synaptic glutamatergic dysregulation related to chronic neuroinflammation. GLT1 is the primary excitatory amino acid transporter responsible for regulating extracellular glutamate levels in the hippocampus. We tested the hypothesis that if impaired spatial memory results from increased extracellular glutamate due to age or experimentally induced chronic neuroinflammation in the hippocampus, then pharmacological augmentation of the glutamate transporter GLT1 will attenuate deficits in a hippocampal-dependent spatial memory task.

View Article and Find Full Text PDF

The current study investigated the hypothesis that the duration of the proinflammatory environment plays a critical role in the brain's response that results in negative consequences on cognition, biochemistry, and pathology. Lipopolysaccharide or artificial cerebrospinal fluid was slowly (250 ηg/h) infused into the fourth ventricle of young (3-month-old), adult (9-month-old), or aged (23-month-old) male F-344 rats for 21 or 56 days. The rats were then tested in the water pool task and endogenous hippocampal levels of pro- and anti-inflammatory proteins and genes and indicators of glutamatergic function were determined.

View Article and Find Full Text PDF

Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing.

View Article and Find Full Text PDF

Background: Alzheimer's disease has become a growing socio-economical concern in developing countries where increased life expectancy is leading to large aged populations. While curing Alzheimer's disease or stopping its progression does not appear within reach in a foreseeable future, new therapies capable of delaying the pathogenesis would represent major breakthroughs.

Presentation Of The Hypothesis: The growing number of medical benefits of cannabinoids, such as their ability to regulate age-related processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of AD.

View Article and Find Full Text PDF