Publications by authors named "Wenjun Cui"

K-containing polyanion compounds hold great potential as anodes for sodium-ion batteries considering their large ion transport channels and stable open frameworks; however, sodium storage behavior has rarely been studied, and the mechanism remains unclear. Here, using a noninterference KTiOPO thin-film model, the Na storage mechanism is comprehensively revealed by in situ/operando spectroscopy, aberration-corrected electron microscopy and density functional theory calculations. We find that incomplete K/Na ion exchange occurs and eventually 0.

View Article and Find Full Text PDF

GAD67 impacts insomnia as a key enzyme catalysing the conversion of glutamate (Glu) to gamma-aminobutyric acid (GABA). Senegenin enhances neuroprotection and is used widely to treat insomnia and other neurological diseases. This study aimed to investigate how senegenin regulates insomnia through a GAD67-mediated signalling pathway.

View Article and Find Full Text PDF

Conversion-type anode materials with high theoretical capacities play a pivotal role in developing future aqueous rechargeable batteries (ARBs). However, their sustainable applications have long been impeded by the poor cycling stability and sluggish redox kinetics. Here we show that confining conversion chemistry in intercalation host could overcome the above challenges.

View Article and Find Full Text PDF

Interdiffusion and solid-solid phase reaction at the interface between thermoelectric (TE) materials and the electrode critically influence interfacial transport properties and the overall energy conversion efficiency during service. Here, the microstructural evolution and diffusion mechanisms at the interfaces between the most widely used BiTe-based TE materials, n-type BiTeSe (BTS) and p-type BiSbTe (BST), and Ni electrodes were investigated at atomic resolution using spherical aberration-corrected scanning transmission electron microscopy (STEM). The BTS(0001)/Ni and BST(0001)/Ni interfaces were constructed by depositing Ni nanoparticles on mechanically exfoliated BTS and BST bulk materials and subsequent annealing.

View Article and Find Full Text PDF

The cost signal of electricity in the competitive electrical energy marketplaces is of special importance for all planning and operation activities. Also, the price of electricity has an uncertain nature and various factors affect it in the short and long term. Factors active in the electricity market need to accurately and effectively forecast the electricity price signal to manage risk in the market.

View Article and Find Full Text PDF

Objective: The aims of this study were to develop the Ovarian-Adnexa Reporting and Data System (O-RADS) and O-RADS + contrast-enhanced ultrasound (O-RADS CEUS) scoring system to distinguish adnexal masses (AMs) and to compare the diagnostic efficacy of these systems with that of a magnetic resonance imaging scoring system (ADNEX MR).

Methods: We retrospectively evaluated 278 ovarian masses from 240 patients between May 2017 and July 2022. Pathology and adequate follow-up were used as reference standards for comparing the validity of O-RADS, O-RADS CEUS and ADNEX MR scoring to diagnose AMs.

View Article and Find Full Text PDF

Electrosynthesis of H O has great potential for directly converting O into disinfectant, yet it is still a big challenge to develop effective electrocatalysts for medical-level H O production. Herein, we report the design and fabrication of electrocatalysts with biomimetic active centers, consisting of single atomic iron asymmetrically coordinated with both nitrogen and sulfur, dispersed on hierarchically porous carbon (Fe -NS/C). The newly-developed Fe -NS/C catalyst exhibited a high catalytic activity and selectivity for oxygen reduction to produce H O at a high current of 100 mA cm with a record high H O selectivity of 90 %.

View Article and Find Full Text PDF

Solid-state lithium-ion batteries (SLIBs) are the promising development direction for future power sources because of their high energy density and reliable safety. To optimize the ionic conductivity at room temperature (RT) and charge/discharge performance to obtain reusable polymer electrolytes (PEs), polyvinylidene fluoride (PVDF), and poly(vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) copolymer combined with polymerized methyl methacrylate (MMA) monomers are used as substrates to prepare PE (LiTFSI/OMMT/PVDF/P(VDF-HFP)/PMMA [LOPPM]). LOPPM has interconnected lithium-ion 3D network channels.

View Article and Find Full Text PDF

Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBiTe (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM).

View Article and Find Full Text PDF

Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO ER) to produce multicarbon (C ) feedstocks (e.g., C H ).

View Article and Find Full Text PDF

Germ cell tumor is the most common malignant tumor of the gonads, sometimes they are found in locations other than the gonads, called Extra-gonadal Germ cell tumours (EGCTs). Primary mediastinal germ cell tumors (PMGCTs) are a kind of rare neoplasm in the anterior mediastinum, including seminoma and non-seminomatous, or appear as a mixture. Primary mediastinal seminoma mixed with sarcoma is an extremely rare clinicopathologic entity.

View Article and Find Full Text PDF

Lithium metal is an ideal anode for next-generation high-energy-density batteries. However, lithium dendrite growth has impeded its commercial application. Herein, fabricating Li-based ultrathin alloys with electronic localization and high surface work function via depositing Bi, Al, or Au metals on the surface of copper foil for in situ alloying with lithium is proposed.

View Article and Find Full Text PDF

In-plane anisotropy (IPA) due to asymmetry in lattice structures provides an additional parameter for the precise tuning of characteristic polarization-dependent properties in two-dimensional (2D) materials, but the narrow range within which such method can modulate properties hinders significant development of related devices. Herein we present a novel periodic phase engineering strategy that can remarkably enhance the intrinsic IPA obtainable from minor variations in asymmetric structures. By introducing alternant monoclinic and rutile phases in 2D VO single crystals through the regulation of interfacial thermal strain, the IPA in electrical conductivity can be reversibly modulated in a range spanning two orders of magnitude, reaching an unprecedented IPA of 113.

View Article and Find Full Text PDF

As a typical two-dimensional (2D) metal chalcogenides and visible-light responsive semiconductor, zinc indium sulfide (ZnInS) has attracted much attention in photocatalysis. However, the high recombination rate of photogenerated electrons and holes seriously limits its performance for hydrogen production. In this work, we report in-situ photodeposition of Ni clusters in hierarchical ZnInS nanoflowers (Ni/ZnInS) to achieve unprecedented photocatalytic hydrogen production.

View Article and Find Full Text PDF

Solid-state lithium batteries using solid polymer electrolytes can improve the safety and energy density of batteries. Smoother lithium-ion channels are necessary for solid polymer electrolytes with high ionic conductivity. The porosity and channel structure of the polymer film affect the transfer of lithium ions.

View Article and Find Full Text PDF

Manipulation of octahedral distortion at atomic scale is an effective means to tune the ground states of functional oxides. Previous work demonstrates that strain and film thickness are variable parameters to modify the octahedral parameters. However, selective control of bonding geometry by structural propagation from adjacent layers is rarely studied.

View Article and Find Full Text PDF

In this paper, we found that (NH)VO undergoes an electrochemical activation process in the first charging process at ∼1.4 V (vs. Zn/Zn), leading to a significant improvement of capacity and cycling stability.

View Article and Find Full Text PDF

Low-dimensional quantum materials that remain strongly ferromagnetic down to monolayer thickness are highly desired for spintronic applications. Although oxide materials are important candidates for the next generation of spintronics, ferromagnetism decays severely when the thickness is scaled to the nanometer regime, leading to deterioration of device performance. Here, a methodology is reported for maintaining strong ferromagnetism in insulating LaCoO (LCO) layers down to the thickness of a single unit cell.

View Article and Find Full Text PDF

Regulation of photoreceptor phosphodiesterase (PDE6) activity is responsible for the speed, sensitivity, and recovery of the photoresponse during visual signaling in vertebrate photoreceptor cells. It is hypothesized that physiological differences in the light responsiveness of rods and cones may result in part from differences in the structure and regulation of the distinct isoforms of rod and cone PDE6. Although rod and cone PDE6 catalytic subunits share a similar domain organization consisting of tandem GAF domains (GAFa and GAFb) and a catalytic domain, cone PDE6 is a homodimer whereas rod PDE6 consists of two homologous catalytic subunits.

View Article and Find Full Text PDF

A series of rhodium complexes bearing sterically and electronically tunable cyclopentadienyl ligands, prepared by utilizing Co(CO)-mediated [2+2+1] cyclization as a key step, were synthesized. In the presence of 2.5 mol% of , unprecedented enantioselective [4+1] annulation reaction of benzamides and alkenes was achieved with a broad substrate scope under mild reaction conditions, providing a variety of isoindolinones with excellent regio- and enantioselectivity (up to 94% yield, 97:3 er).

View Article and Find Full Text PDF

The pursuit of high-performance photodetectors functioning in the solar-blind spectrum is motivated by both scientific and practical applications ranging from secure communication, monitoring, sensing, etc. In particular, the fabrication of heterojunctions based on the wide band gap semiconductors has emerged as an attractive strategy to promote the high-efficient photogenerated electron/hole pair separation. However, the precisely controlled growth of heterojunctions remains a huge challenge.

View Article and Find Full Text PDF

The overexpression of inflammasome components is correlated with diabetes‑associated complications. Oleanolic acid is a triterpenoid compound which is important in arterial injury. The present study evaluated whether oleanolic acid improved diabetic rat carotid artery injury through the inhibition of nucleotide‑binding domain, leucine‑rich‑containing family, pyrin domain‑containing‑3 (NLRP3) inflammasomes signaling pathways.

View Article and Find Full Text PDF

The majority of amyotrophic lateral sclerosis (ALS)-related mutations in the enzyme Cu,Zn superoxide dismutase (SOD1), as well as a post-translational modification, glutathionylation, destabilize the protein and lead to a misfolded oligomer that is toxic to motor neurons. The biophysical role of another physiological SOD1 modification, T2-phosphorylation, has remained a mystery. Here, we find that a phosphomimetic mutation, T2D, thermodynamically stabilizes SOD1 even in the context of a strongly SOD1-destabilizing mutation, A4V, one of the most prevalent and aggressive ALS-associated mutations in North America.

View Article and Find Full Text PDF

The vastly increasing application of chiral Cp ligands in asymmetric catalysis results in growing demand for novel chiral Cp ligands. Herein, we report a new class of chiral Cp ligands based on 1,1'-spirobiindane, a privileged scaffold for chiral ligands and catalysts. The corresponding Rh complexes are shown to be excellent catalysts in asymmetric oxidative coupling reactions, providing axially chiral biaryls in 19-97% yields with up to 98:2 er.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions3ie83tt0auolgi3lvvgrib67b01o2av): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once