Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function.
View Article and Find Full Text PDFSpaceflight is physically demanding and can negatively affect astronauts' health. It has been shown that the human gut microbiota and cardiac function are affected by spaceflight and simulated spaceflight. This study investigated the effects of the gut microbiota on simulated spaceflight-induced cardiac remodeling using 10° of head-down bed rest (HDBR) in rhesus macaques and 30° of hindlimb unloading (HU) in mice.
View Article and Find Full Text PDFThe human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood.
View Article and Find Full Text PDFHypoxic pulmonary hypertension (HPH) is caused by chronic persistent hypoxia, which leads to the continuous increase of pulmonary artery pressure and pulmonary vascular resistance. In recent years, there has been a substantial increase in research on HPH. To study the trends of HPH research over the last decade, we used WOSCC to search for relevant research on this topic, and dealt with the relevant information using VOSviewer, CiteSpace, and R-tool.
View Article and Find Full Text PDFBone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear.
View Article and Find Full Text PDFIntroduction: Individuals differ in how they judge facial attractiveness. However, little is known about the role of arousal level and gender differences in individuals' facial attractiveness judgments.
Methods: We used resting-state electroencephalogram (EEG) to investigate this issue.
Peppermint essential oil, being natural and safe, with antioxidant and anti-inflammatory properties, has long been a research interest in relieving fatigue and improving exercise performance. However, the related studies report controversial results, and the mechanisms remain unclear. Here we found that inhalation of peppermint essential oil significantly extended the exhaustion time in rats subjected to 2-week weight-bearing swimming training.
View Article and Find Full Text PDFMechanical force loading is essential for maintaining bone homeostasis, and unloading exposure can lead to bone loss. Osteoclasts are the only bone resorbing cells and play a crucial role in bone remodeling. The molecular mechanisms underlying mechanical stimulation-induced changes in osteoclast function remain to be fully elucidated.
View Article and Find Full Text PDFVascular aging contributes to adverse changes in organ function and is a significant indicator of major cardiac events. Endothelial cells (ECs) participate in aging-provoked coronary vascular pathology. Regular exercise is associated with preservation of arterial function with aging in humans.
View Article and Find Full Text PDFAims: Cardiorespiratory fitness (CRF), an important biomarker of human health, is impaired in cold environment compared to thermoneutral condition. The study aimed to investigate the role of metabolome response to acute exercise in regulation of CRF at different ambient temperatures.
Main Methods: A total of 27 young adults were recruited, and each subject underwent a cardiopulmonary exercise test (CPET) and a constant load submaximal exercise at both room temperature (25 °C) and cold temperature (0 °C).
Chronic stress impairs working memory (WM), but few studies have explored the protective factors of the impairment. We aimed to investigate the effect of self-awareness on WM processing in people under chronic stress. Participants under chronic stress completed an n-back task after a self-awareness priming paradigm during which electroencephalograms were recorded.
View Article and Find Full Text PDFOxid Med Cell Longev
September 2022
Iron is indispensable in numerous biologic processes, but abnormal iron regulation and accumulation is related to pathological processes in cardiovascular diseases. However, the underlying mechanisms still need to be further explored. Iron plays a key role in metal-catalyzed oxidative reactions that generate reactive oxygen species (ROS), which can cause oxidative stress.
View Article and Find Full Text PDFBackground: Regular exercise has been recommended clinically for all individuals to protect against hypertension but the underlying mechanisms are not fully elucidated. We recently found a significant mitochondrial fragmentation in the vascular endothelium of hypertensive human subjects. In this study, we investigated whether exercise could restore endothelial mitochondrial dynamics and thus improve vascular function in hypertension.
View Article and Find Full Text PDFFront Bioeng Biotechnol
April 2022
As hematopoietic stem cells can differentiate into all hematopoietic lineages, mitigating the damage to hematopoietic stem cells is important for recovery from overdose radiation injury. Cells in bone marrow microenvironment are essential for hematopoietic stem cells maintenance and protection, and many of the paracrine mediators have been discovered in shaping hematopoietic function. Several recent reports support exosomes as effective regulators of hematopoietic stem cells, but the role of osteoblast derived exosomes in hematopoietic stem cells protection is less understood.
View Article and Find Full Text PDFMechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength, whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) play key roles in diverse biological, physiological and pathological contexts.
View Article and Find Full Text PDFMicrogravity prominently affected cardiovascular health, which was the gravity-dependent physical factor. Deep space exploration had been increasing in frequency, but heart function was susceptible to conspicuous damage and cardiac mass declined in weightlessness. Understanding of the etiology of cardiac atrophy exposed to microgravity currently remains limited.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2021
Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis.
View Article and Find Full Text PDFVascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation.
View Article and Find Full Text PDFAims: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown.
Methods And Results: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes.
Exposure to acute transition from negative (-Gz) to positive (+ Gz) gravity significantly impairs cerebral perfusion in pilots of high-performance aircraft during push-pull maneuver. This push-pull effect may raise the risk for loss of vision or consciousness. The aim of the present study was to explore effective countermeasures against cerebral hypoperfusion induced by the push-pull effect.
View Article and Find Full Text PDFBackground: Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined.
View Article and Find Full Text PDFInjury/dysfunction of the endothelium of pulmonary arteries contributes to hypoxia-induced pulmonary hypertension (HPH). We investigated whether C1q/tumor necrosis factor-related protein-9 (CTRP9), a newly identified cardiovascular agent, has protective roles in the development of HPH. HPH was induced in adult male rats by chronic hypobaric hypoxia.
View Article and Find Full Text PDFRationale: Hypertension in obesity has become a major threat for public health. Omentin-1, a novel adipokine, is down-regulated in obesity. Tetrahydroxystilbene glycoside (TSG) is the main ingredient extracted from Polygonum multiflorum Thunb (PMT), a traditional Chinese medicinal herb safely used for protecting cardiovascular systems over bimillennium.
View Article and Find Full Text PDFThis study aimed to investigate the role of vascular insulin resistance (VIR) and Tribbles homolog 3 (TRIB3) in the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). Rats were subjected to low air pressure and low oxygen intermittently for 4 weeks to induce HPH. The mean right ventricular pressure (mRVP), mean pulmonary arterial pressure (mPAP), and right ventricular index (RVI) were significantly increased in HPH rats.
View Article and Find Full Text PDF