Publications by authors named "Wenjing Lai"

α-Fetoprotein (AFP) is widely recognized as an important marker for monitoring hepatocellular carcinoma (HCC), and its monitoring using two different transduction mechanisms is an effective way to avoid the risk of false positives or false negatives. In this paper, Au@Cu/CuO-rGO was used as a photothermal converter as well as an actuator to promote the decomposition of hydrogen peroxide (HO), which was further designed as a probe for dual-mode detection to quantitatively assess AFP. The composite nanomaterials possessed photothermal conversion efficiencies (η) of up to 54.

View Article and Find Full Text PDF

Mycotoxin contamination currently poses a significant concern and presents a major challenge to global food safety management. In this research, gold‑silver nanoclusters (Au-AgNCs) were utilized as platforms for electrogenerated chemiluminescence (ECL) and electrochemical (EC) responses, while polyaniline-coated cobalt tetraoxide and gold (PANI@CoO/AuNPs) served as bifunctional probes with intelligently modulated light/electric signals to develop a dual mode adaptor sensor for sensitive detection of alternariol (AOH). The sensor's benefits are evident in three areas:(1) Bandgap modulation allows Au-Ag to exhibit enhanced light/electric response;(2) PANI@CoO/AuNPs exhibit both ECL quenching effects and the capability to activate KHSO, along with improved electrical conductivity, which collectively improves the sensor's detection performance;(3) The dual-channel signal outputs significantly reduce the risk of false detections.

View Article and Find Full Text PDF

The combination of the photothermal effect and immunoassay serves as a potent tool for crafting cost-effective and user-friendly biosensing systems. To ensure efficient light-to-heat conversion, we integrated three-dimensional-printed (3D printed) technology to devise a novel design. This design functions as the structural support for both the cell phone and laser probe, as well as a means for sample handling.

View Article and Find Full Text PDF

A water-induced electron-deficient dye, the supramolecule perylene diimide (PDI), has been identified recently. PDI possesses advantages such as easy reduction, nontoxicity, low cost, and simple preparation, making it a promising candidate for electrochemiluminescence (ECL) sensing platforms. In this study, a series of PDI supramolecular systems with morphological changes were prepared by utilizing water molecules to induce PDI self-assembly.

View Article and Find Full Text PDF

Artesunate (ART), a natural product isolated from traditional Chinese plant Artemisia annua, has not been extensively explored for its anti-melanoma properties. In our study, we found that ART inhibited melanoma cell proliferation and induced melanoma cell ferroptosis. Mechanistic study revealed that ART directly targets Ido1, thereby suppressing Hic1-mediated transcription suppression of Hmox1, resulting in melanoma cell ferroptosis.

View Article and Find Full Text PDF

Introduction: Chemoimmunotherapy, which benefits from the combination of chemotherapy and immunotherapy, has emerged as a promising strategy in cancer treatment. However, effectively inducing a robust immune response remains challenging due to the limited responsiveness across patients. Endoplasmic reticulum (ER) stress is essential for activating intracellular signaling pathways associated with immunogenic cell death (ICD), targeting drugs to ER might enhance ER stress and improve ICD-related immunotherapy.

View Article and Find Full Text PDF

Background: Atractylodes macrocephala Koidz. (Baizhu in Chinese, BZ) is a typical traditional edible-medicinal herb used for thousands of years. Known as "the spleen-reinforcing medicine", it is often used clinically to treat reduced digestive function, abdominal distension, and diarrhoea, which are all caused by spleen deficiency.

View Article and Find Full Text PDF

This study explores the principles of resonance energy transfer and adsorption modulation using composites of CuS-MPA/NGODs. These composites can efficiently control the quenching process of electrochemiluminescence (ECL). Mercaptopropionic acid (MPA) was added during the synthesis of CuS-MPA to enhance its attachment to nitrogen-doped graphene quantum dots (NGODs).

View Article and Find Full Text PDF

Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment.

View Article and Find Full Text PDF

Gypenoside is a natural extract of (Thunb.) Makino, a plant in the Cucurbitaceae family. It has been reported to have antitumor effects on the proliferation, migration and apoptosis of various types of cancer cells.

View Article and Find Full Text PDF

Perylene diimide (PDI) is a readily reducible electron-deficient dye that exhibits strong photoluminescent properties, providing new opportunities for synthesizing novel electrochemiluminescence (ECL) emitters. In this study, ethylene glycol (EG) was used to induce the self-assembly of PDI supramolecules for the preparation of ultrathin EG-PDI nanosheets characterized by low crystallinity and weak stacking interaction. Notably, EG-PDI integrates luminescent and catalytic functions into one device, accelerating the interfacial electron transfer and the faster charge transfer kinetics of EG-PDI with KSO.

View Article and Find Full Text PDF

In recent years, carbon nitride (CN) has attracted substantial attention in the field of electrochemiluminescence (ECL) applications, owing to its outstanding optical and electronic properties. However, the passivation of CN during the ECL process has contributed to reduced stability and poor repeatability. While some studies have tried to boost ECL performance by altering CN through doping and vacancies, effectively suppressing CN passivation at high potentials continues to be challenge.

View Article and Find Full Text PDF

Background: Periodontitis is a chronic oral inflammatory disease that seriously affects people's quality of life. The purpose of our study was to investigate the correlation between the systemic immune inflammation index (SII) and periodontitis by utilizing a large national survey. This will establish a reference for the early identification and management of periodontitis.

View Article and Find Full Text PDF

Although immune checkpoint therapy has significantly improved the prognosis of patients with melanoma, urgent attention still needs to be paid to the low patient response rates and the challenges of precisely identifying patients before treatment. Therefore, it is crucial to investigate novel immunosuppressive mechanisms and targets in the tumor microenvironment in order to reverse tumor immune escape. In this study, we found that the cell cycle checkpoint Aurora kinase B (AURKB) suppressed the anti-tumor immune response, and its inhibitor, Tozasertib, effectively activated T lymphocyte cytokine release in vitro and anti-tumor immunity in vivo.

View Article and Find Full Text PDF

By combining two different materials, metal-organic frameworks (MOF) and β-cyclodextrins (β-CD), a signal amplification electrochemical luminescence (ECL) immunosensor was constructed to realize the sensitive detection of AFP. The indium-based metal-organic framework (In-MOF) was used as the carrier of Ru(bpy), and Ru(bpy) was immobilized by In-MOF through suitable pore size and electrostatic interaction. At the same time, using host-guest recognition, β-CD enriched TPA into the hydrophobic cavity for accelerating the electronic excitation of TPA, then, achieving the purpose of signal amplification.

View Article and Find Full Text PDF

Compared with the accuracy of a single signal and the limitation of environmental applicability, the application value of dual-mode detection is gradually increasing. To this end, based on the photothermal effect of Ag/Co embedded N-rich mesoporous carbon nanomaterials (AgCo@NC NPs), we designed a dual-mode signal response system for the detection of α-fetoprotein (AFP). First, AgCo@NC NPs act as a photothermal immunoprobe that converts light energy into heat driven by a near-infrared (NIR) laser and obtains temperature changes corresponding to the analyte concentration on a hand-held thermal imager.

View Article and Find Full Text PDF

Src homolog and collagen homolog binding protein 1 (SHCBP1) binds to the SH2 domain of SHC-transforming protein 1 (SHC1) and is involved in midbody organization and cytokinesis completion. SHCBP1 has been reported to be a cancer driver gene, promoting cancer progression. However, the functional role and underlying mechanism of SHCBP1 in regulating lung adenocarcinoma (LUAD) cell proliferation and migration are incompletely understood.

View Article and Find Full Text PDF

To sensitively monitor trace amounts of alternariol (AOH) in fruits, a dual-mode aptamer sensor utilizing the dual-function nanomaterial PoPD/Ru-Au was developed. This sensor provides both electrochemical (EC) and electrochemiluminescence (ECL) signals, which can greatly avoid the potential false positive of the traditional single signal, thus enhancing the accuracy and reliability of detection results. Polyo-phenylenediamine (PoPD), known for its favorable EC response, can also assist in enhancing the ECL behavior of Ru-Au.

View Article and Find Full Text PDF

Background: Cancer is the world's leading cause of death and a key hindrance to extending life expectancy. Celastrol, a bioactive compound derived from Tripterygium wilfordii, has been shown to have excellent antitumor activity, but its poor solubility and severe organ toxicity side effects have hampered its clinical application.

Methods: In this study, a self-assembled nanodrug (PLC-NP) was designed to deliver celastrol to tumor sites while efficiently reducing its side effects by conjugating celastrol with the bioactive material LMWH and P-selectin targeting peptide (PSN).

View Article and Find Full Text PDF

In this study, a novel dual-mode aptamer sensor was developed using Fca-DNA as the quenching electrochemiluminescence (ECL) and electrochemical (EC) signal response probe, and Ru-MOF/Cu@Au NPs were used as the ECL substrate platform to detect Alternariol (AOH) via a competitive reaction between AOH and Fca-DNA. Compared with the conventional aptamer sensor with a single detection signal, this dual-mode aptamer sensor has the following advantages: (1) Electrodeposition-based rapid synthesis Ru-MOF on the electrode surface. (2) The Signal amplification substance Cu@Au NPs can synergistically catalyze Triethanolamine (TEOA) to amplify ECL behavior.

View Article and Find Full Text PDF

CdInS is an interesting ternary metal sulfide whose narrow band gap and tunable optical properties offer new opportunities for the development of novel ECL emitters. Here, we use a simple hydrothermal synthesis to obtain hollow spindle CdInS (S-CIS), which exhibits strong near-infrared electrochemiluminescence (ECL) emission with KSO as a coreactant at a low excitation potential (-1.3 V), which is encouraging.

View Article and Find Full Text PDF

Alpha-fetoprotein (AFP) is the best diagnostic marker for hepatocellular carcinoma (HCC) and plays an important role in the general surveillance of the population. Therefore, the establishment of an ultra-sensitive AFP assay is essential for the early screening and clinical diagnosis of HCC. In this work, we designed a signal-off biosensor for ultra-sensitive detection of AFP based on an electrochemiluminescent resonance energy transfer (ECL-RET) strategy using luminol intercalated layered bimetallic hydroxide (Luminol-LDH) as an ECL donor and Pt nanoparticles-grown on copper sulfide nanospheres (CuS@Pt) as ECL acceptor.

View Article and Find Full Text PDF

The improvement of electrochemiluminescence (ECL) intensity in luminol, a classic electrochemiluminescent material, remains a controversial topic. In this study, synthesis of acetylene black oxide (ACETO) through simple air annealing was successful in introducing oxygen-containing groups and defects, which can act as active sites for the oxygen reduction reaction (ORR) and exhibit excellent catalytic activity. By introducing the two-electron (2e) ORR into the cathode ECL system of luminol, integration of ACETO and luminol allows for in situ generation of dissolved oxygen into reactive oxygen species (ROS), thereby enhancing the ECL intensity of luminol.

View Article and Find Full Text PDF

In this paper, a novel donor-acceptor pair was creatively proposed based on the principle of electrochemiluminescence resonance energy transfer (ECL-RET): luminol immobilized on polyethyleneimine (PEI)-functionalized manganese-based single-atom nanozymes (Mn SANE/PEI-luminol, donor) and a PtCu-grafted hollow metal polydopamine framework (PtCu/h-MPF, acceptor). A quenched ECL immunosensor was constructed for the ultrasensitive analysis of carcinoembryonic antigen (CEA). Mn SANE, as an efficient novel coreaction accelerator with the outstanding performance of significantly activating HO to produce large amounts of ROS, was further modified by the coreactant PEI, which efficiently immobilized luminol to form a self-enhanced emitter.

View Article and Find Full Text PDF

Effective signal amplification is a prerequisite for ultrasensitive detection by electrochemical immunosensors. For quantitative and ultrasensitive detection of alpha-fetoprotein (AFP), we designed a competitive electrochemical immunosensor and transferred the immunoreactivity from the electrode surface to the cuvette. AFP antigen was captured using AFP primary antibody (Ab) immobilized on magnetic nanobeads (MBs), and ZIF-8 nanomaterials attached to secondary antibody (Ab) were used as probes.

View Article and Find Full Text PDF