The utilization of Pd(ii)-catalyzed oxidation for the transformation of terminal olefins into methyl ketones has emerged as a particularly intriguing and versatile strategy in organic synthesis. Herein we report a novel Pd(ii)-catalyzed Wacker-type oxidation with covalent bidentate ligands. The ligand, 1-(pyridin-2-yl)-1,2-dihydro-3-indazol-3-one, exhibits excellent performance in converting olefins to ketones.
View Article and Find Full Text PDFA concise approach to the construction of the 2-pyrrolin-5-one scaffold was developed a one-pot reaction with formal [3 + 2] annulation/elimination between β-keto nitrile/β-keto ester and unsubstituted α-halohydroxamates. This reaction features mild conditions, easy handling, broad substrate scope and good yields. Remarkably, the products could be readily converted into potentially bioactive alkylidenepyrrolinones, pyrroles, pyran-fused pyrrole heterocycles and other useful compounds, exhibiting versatile synthetic potential.
View Article and Find Full Text PDFA design-inexpensive, effective, and easy-to-prepare additive in the large-scale preparation of perovskite solar cells (PSCs) is urgently desired to alleviate the future energy crisis. Carbon-based quantum dots have demonstrated novel nanomaterials with excellent chemical stability and high electrical conductivity, which exhibit great potential as additives for perovskite optoelectronics. Herein, we designed novel highly fluorescent collagen-based quantum dots (Col-QDs) and thoroughly studied the micromorphological characteristics, photoluminescence properties, and the states of surface-functionalized groups on the Col-QDs.
View Article and Find Full Text PDFWindows are the least energy efficient part of the buildings, as building accounts for 40% of global energy consumption. Traditional smart windows can only regulate solar transmission, while all the solar energy on the window is wasted. Here, for the first time, the authors demonstrate an energy saving and energy generation integrated smart window (ESEG smart window) in a simple way by combining louver structure solar cell, thermotropic hydrogel, and indium tin oxides (ITO) glass.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2022
Hypothesis: Interactions between droplets are of fundamental importance for understanding phenomena involving droplet collision and coalescence that determine multiphase flow behavior. The quantitative understanding of these interactions is essential for the manipulation and control of emulsions or complex fluids. The existing methods for interaction force determination are typically based on expensive mechanical probes and fine distance control.
View Article and Find Full Text PDFA Ni(ii)-bis(oxazoline) complex and -TSOH are used to form enantioenriched 4-chromenes from -quinone methides (-QMs) and dicarbonyls, providing the desired products in up to 95% ee. The method is compatible with various β-ketoester substrates, and the products obtained could be converted into biologically active 4-chromene derivatives.
View Article and Find Full Text PDFProppant is a key material, which can increase the production of unconventional petroleum and gas. Excellent proppants with a long migration distance are required in the fracture network. Resin-coated proppants have been confirmed as a good choice because of the long migration and the self-suspending ability in fracturing fluids.
View Article and Find Full Text PDFRecently, we developed highly fluorescent Ti C and Nb C Mxene quantum dots (QDs) for labeling of in vitro models. However, the mechanism of the toxicity of the prepared QDs was not explored before. In this study, we addressed the possible mechanism associated with cytotoxicity of the QDs to human umbilical vein endothelial cells (HUVECs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
DNA nanostructures are a new type of technology for constructing nanomaterials that has been developed in recent years. By relying on the complementary pairing of DNA molecules to form a double-stranded property, DNA molecules can construct a variety of nanoscale structures of 2D and 3D shapes. However, most of the previously reported DNA nanostructures rely solely on hydrogen bonds to maintain structural stability, resulting in DNA structures that can be maintained only at low temperature and in the presence of Mg, which greatly limits the application of DNA nanostructures.
View Article and Find Full Text PDFBackground: It is important to determine prognostic factors for the outcome of amyotrophic lateral sclerosis (ALS) at an early stage. The time taken for symptoms to spread from spinal or bulbar regions to both (time to generalization; TTG) is considered a strong predictor of survival; however, this has rarely been studied in Asian populations. The aim of this retrospective study was to evaluate potential factors affecting prognosis in Chinese patients with sporadic ALS, with a focus on the association between TTG and overall survival.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
May 2019
The objective of this study was to compare iron metabolic variables in the serum and cerebrospinal fluid (CSF) of patients with sporadic amyotrophic lateral sclerosis (sALS) with those of patients with multiple system atrophy (MSA) and control subjects. We also assessed the correlations of these variables with sALS progression and severity and estimated their roles in predicting prognosis. We retrospectively collected iron metabolic parameters, including serum levels of iron, ferritin, transferrin levels and total iron binding capacity and the CSF level of ferritin, from 435 sALS patients, 176 MSA patients and 431 control subjects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Geckos have one of the world's most efficient reversible adhesion systems. Even walking in dusty conditions, geckos can dislodge up to 80% of contaminants and recover their adhesion capability after walking as few as four steps. Thus far, artificial dry self-cleaning materials inspired by the geckos' hierarchical fibrillar structure have been only able to remove 55% of collected large particle contaminants with 30 steps.
View Article and Find Full Text PDFIon current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities.
View Article and Find Full Text PDFThis paper describes the design and fabrication of a "pop-up" electrochemical paper-based analytical device (pop-up-EPAD) to measure beta-hydroxybutyrate (BHB)-a biomarker for diabetic ketoacidosis-using a commercial combination BHB/glucometer. Pop-up-EPADs are inspired by pop-up greeting cards and children's books. They are made from a single sheet of paper folded into a three-dimensional (3D) device that changes shape, and fluidic and electrical connectivity, by simply folding and unfolding the structure.
View Article and Find Full Text PDFInt J Clin Exp Pathol
October 2016
Parkinson's disease (PD) is one common neurodegenerative disease featured with degeneration of dopaminergic neurons in substantia nigra. Multiple factors participate in the pathogenesis and progression of PD. In this study, we investigated the proteomics profiles of mononuclear cells in cerebrospinal fluids from both PD patients and normal people, in order to explore the correlation between disease factors and PD.
View Article and Find Full Text PDFThis paper describes the design and fabrication of ion-sensing electrochemical paper-based analytical devices (EPADs) in which a miniaturized paper reference electrode is integrated with a small ion-selective paper electrode (ISPE) for potentiometric measurements. Ion-sensing EPADs use printed wax barriers to define electrochemical sample and reference zones. Single-layer EPADs for sensing of chloride ions include wax-defined sample and reference zones that each incorporate a Ag/AgCl electrode.
View Article and Find Full Text PDFThe development of nanopore fabrication methods during the past decade has led to the resurgence of resistive-pulse analysis of nanoparticles. The newly developed resistive-pulse methods enable researchers to simultaneously study properties of a single nanoparticle and statistics of a large ensemble of nanoparticles. This review covers the basic theory and recent advances in applying resistive-pulse analysis and extends to more complex transport motion (e.
View Article and Find Full Text PDFWe describe ion distribution and the current-voltage (i-V) response of nanopipettes at different probe-to-substrate distances (Dps) as simulated by finite-element methods. Results suggest electrostatic interactions between a charged substrate and the nanopipette dominate electrophoretic ion transport through the nanopipette when Dps is within 1 order of magnitude of the Debye length (∼10 nm for a 1 mM solution as employed in the simulation). Ion current rectification (ICR) and permselectivity associated with a neutral or charged nanopipette can be reversibly enhanced or reduced dependent on Dps, charge polarity, and charge density (σ) of the substrate.
View Article and Find Full Text PDFHigh-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation.
View Article and Find Full Text PDFThis paper describes the development of a referenced Electrochemical Paper-based Analytical Device (rEPAD) comprising a sample zone, a reference zone, and a connecting microfluidic channel that includes a central contact zone. We demonstrated that the rEPADs provide a simple system for direct and accurate voltammetric measurements that are referenced by an electrode with a constant, well-defined potential. The performance of the rEPADs is comparable to commercial electrochemical cells, and the layout can be easily integrated into systems that permit multiplexed analysis and pipette-free sampling.
View Article and Find Full Text PDFA general redox procedure was successfully developed for the controlled synthesis of substituted cobalt oxides with hierarchical flower-like nanostructures comprising unique Y-shaped interconnections. The substitution and nanostructures synergistically enhance the material's electrochemical activities for highly efficient sensing of H2O2.
View Article and Find Full Text PDFA novel and simple approach to prepare monodispersed chitosan microspheres with relative small size and controlled structures was developed by combining the solidification methods of solvent extraction and chemical crosslinking in a capillary-embedded microfluidic decive. The microspheres with different structures are used in the field of protein drug controlled release and immobilization lipases and they show different release profiles and good stability, respectively.
View Article and Find Full Text PDFLiquid-phase negative differential resistance (NDR) is observed in the i-V behavior of a conical nanopore (~300 nm orifice radius) in a glass membrane that separates an external low-conductivity 5 mM KCl solution of dimethylsulfoxide (DMSO)/water (v/v 3:1) from an internal high-conductivity 5 mM KCl aqueous solution. NDR appears in the i-V curve of the negatively charged nanopore as the voltage-dependent electro-osmotic force opposes an externally applied pressure force, continuously moving the location of the interfacial zone between the two miscible solutions to a position just inside the nanopore orifice. An ~80% decrease in the ionic current occurs over less that a ~10 mV increase in applied voltage.
View Article and Find Full Text PDFThe influence of diffusional motion on the capture and release of individual nanoparticles as they are driven through a conical-shaped glass nanopore membrane (GNM) by pressure-induced flow is reported. In these experiments, one to several hundred particles are driven through the orifice of the nanopore. Following the initial translocation, the pressure is reversed and the particles are driven through the GNM orifice in the reverse direction.
View Article and Find Full Text PDFPost-self-assembly modifications of a discrete metal-organic supramolecular structure have been developed. Such modifications allow the properties of the self-assembled supramolecular species to be changed in a simple and efficient manner (>90% yield). Initiated by the application of chemical stimuli, the post-self-assembly modifications described herein result in three distinct changes to the supramolecular system: an individual building-block component change, an overall structural modification, and a functional evolution of a [6+4] metal-organic supramolecular structure.
View Article and Find Full Text PDF