Critical-sized bone defects represent an urgent clinical problem, necessitating innovative treatment approaches. Gene-activated grafts for bone tissue engineering have emerged as a promising solution. However, traditional gene delivery methods are constrained by limited osteogenic efficacy and safety concerns.
View Article and Find Full Text PDFBackground: The clinically high comorbidity between polycystic ovary syndrome (PCOS) and breast cancer (BC) has been extensively reported. However, limited knowledge exists regarding their shared genetic basis and underlying mechanisms.
Method: Leveraging summary statistics from the largest genome-wide association studies (GWASs) to date, we conducted a comprehensive genome-wide cross-trait analysis of PCOS and BC.
Research has revealed that prolonged or repeated exposure to isoflurane, a common general anesthetic, can lead to cognitive and behavioral deficiencies, particularly in early life. The brain contains a wealth of LanCL1, an antioxidant enzyme that is thought to mitigate oxidative stress. Nevertheless, its precise function in mammals remains uncertain.
View Article and Find Full Text PDFWhole breast irradiation after breast-conserving surgery for early breast cancer has become one of the standard treatment modes for breast cancer and yields the same effect as radical surgery. Accelerated partial breast irradiation (APBI) as a substitute for whole breast irradiation for patients with early breast cancer is a hot spot in clinical research. APBI is characterised by simple high-dose local irradiation of the tumour bed in a short time, thus improving convenience for patients and saving costs.
View Article and Find Full Text PDFBreast cancer is the most common cancer among women worldwide. Postmastectomy radiotherapy (PMRT) is an essential component of combined therapy for early-stage, high-risk breast cancer. Breast reconstruction (BR) is often considered for patients with breast cancer who have undergone mastectomy.
View Article and Find Full Text PDFIn recent years, nanomaterials have gained widespread use in the biomedical field, with ZIF-8 and ZnO emerging as promising candidates due to their remarkable performance in osteogenesis, angiogenesis, and antimicrobial therapy. However, before advancing these nanomaterials for clinical applications, it is imperative to evaluate their biocompatibility. In particular, comparing nanomaterials with similar biomedical functions is crucial for identifying the most suitable nanomaterials for further development and market entry.
View Article and Find Full Text PDFAn important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a key role in regulating cell survival. However, the role and mechanism of PKM2 in regulating cell survival during AKI remain unclear.
View Article and Find Full Text PDFThe treatment of wounds that develop on moving parts of the body, such as joints, is considered a challenge due to poor mechanical matching and secondary injury caused by continuous motion and inflammation. Herein, a stretchable, multifunctional hydrogel dressing utilizing the dual cross-linking of chitosan (CS) and acrylic acid (AA) and modified with caffeic acid (CA) and aloin (Alo) was developed. Mechanical testing demonstrated that the hydrogel possessed excellent stretching capability (of approximately 869%) combined with outstanding adhesion (about 56 kPa), contributing to its compatibility with moving parts and allowing complete coverage of wound sites without limiting joint and organ motion.
View Article and Find Full Text PDFMicrobial keratitis, a nonviral corneal infection caused by bacteria, fungi, and protozoa, is an urgent condition in ophthalmology requiring prompt treatment in order to prevent severe complications of corneal perforation and vision loss. It is difficult to distinguish between bacterial and fungal keratitis from image unimodal alone, as the characteristics of the sample images themselves are very close. Therefore, this study aims to develop a new deep learning model called knowledge-enhanced transform-based multimodal classifier that exploited the potential of slit-lamp images along with treatment texts to identify bacterial keratitis (BK) and fungal keratitis (FK).
View Article and Find Full Text PDFDrug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal-organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications.
View Article and Find Full Text PDFFull-thickness oral mucosal defects are accompanied by significant blood loss and frequent infections. Instead of conventional therapies that separate hemostasis and anti-inflammation in steps, emerging hydrogels can integrate multiple functions for the successive process after defect including hemostasis/inflammatory phase, proliferative phase, and remodeling phase. However, these functions can be easily compromised by rapid swelling and degradation of hydrogels in wet oral environment.
View Article and Find Full Text PDFIn the process of bone tissue regeneration, regulation of osteogenesis-angiogenesis coupling is of great importance. Therefore, dimethyloxallyl glycine (DMOG) is loaded by nanoscale zeolitic imidazolate frameworks-8 (ZIF-8) to obtain a drug-loading system that can promote osteogenesis-angiogenesis coupling. Characterization of the drug-loading nanoparticles (DMOG@ZIF-8) reveals that DMOG is successfully loaded into ZIF-8 by two different methods, and the DMOG@ZIF-8 is prepared using the one-pot method (OD@ZIF-8) achieves higher loading efficiency and longer release time than those prepared using the post-loading method (PD@ZIF-8).
View Article and Find Full Text PDFBiocompatibility and osteointegration of implants are highly desired in orthopedic and dentistry applications. The synthesis of a coating with ideal biocompatibility and osteogenic effect carries practical significance for improving the bio-inertness of pure Ti implants. Metal-organic frameworks (MOFs) are effective surface modification agents in bone regeneration applications.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2022
Eutrophication has become an increasingly serious environmental issue and has contributed towards an explosion in harmful algal blooms (HABs) affecting local development. HABs can cause serious threats to ecosystems and human health. A newly isolated algicidal strain, F2, showed high algicidal activity against the typical HAB species .
View Article and Find Full Text PDFThe rapid spread of drug-resistant pathogens threatens human health. To address the current antibacterial dilemma, the development of antibiotic-free strategies using nanotechnology is imperative. In this study, silver nanoparticles (Ag-P&C NPs) with pH-sensitive charge reversal and self-aggregation capacities are successfully synthesized.
View Article and Find Full Text PDFBackground: Chronic kidney disease (CKD) is a global public health problem. With the deterioration of renal function, a certain proportion of CKD patients enter the uremic stage, and secondary hyperparathyroidism (SHPT) becomes a challenge. For refractory hyperparathyroidism, parathyroidectomy (PTX) plays a key role in reducing mortality and improving prognosis.
View Article and Find Full Text PDFThe growing demand for charming smiles has led to the popularization of tooth bleaching procedures. Current tooth bleaching products with high-concentration hydrogen peroxide (HP, 30-40%) are effective but detrimental due to the increased risk of enamel destruction, tooth sensitivity, and gingival irritation. Herein, we reported a less-destructive and efficient tooth whitening strategy with a low-concentration HP, which was realized by the remarkably enhanced Fenton-like catalytic activity of oxygen-deficient TiO (TiO).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2021
Scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. However, on traditional 3D printed bone tissue engineering scaffolds, cells can only grow on the fiber surface and form bone. We designed a scaffold with a cross-scale structure of PCL/β-TCP, which contains thick fibers with a diameter of 500 μm printed by FDM.
View Article and Find Full Text PDFSMAX1/SMXL (SUPPRESSOR OF MAX2 1/SMAX1-LIKE) proteins function as transcriptional repressors in karrikin and strigolactone (SL) signaling pathways and regulate plant architecture. MAX2 is a common factor in the two signaling pathways and a component of the SCF complex that modulates the proteasome-mediated degradation of SMAX1/SMXLs. SMXL6, 7, and 8 proteins promote shoot branching and inhibit petiole elongation.
View Article and Find Full Text PDF