Publications by authors named "Wenji Jiang"

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

In this work, three-dimensional (3D) Ag aerogel-supported Hg single-atom catalysts (SACs) were explored as an efficient surface-enhanced Raman scattering (SERS) substrate to monitor the enhanced oxidase-like reaction. The influence of the concentrations of Hg to prepare 3D Hg/Ag aerogel networks on their SERS properties to monitor the oxidase-like reaction has been investigated, and a specific enhancement with an optimized addition of Hg has been achieved. The formation of Ag-supported Hg SACs with the optimized Hg addition was identified from a high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and X-ray photoelectron spectroscopy (XPS) measurement at an atomic level.

View Article and Find Full Text PDF

Understanding the structure-activity correlation and reaction mechanism of the catalytic process in an acetic acid-sodium acetate (HAc-NaAc) buffer environment is crucial for the design of efficient nanozymes. Here, we first reported a lattice restructuration of Au-LaNiO nanofibers (NFs) after acidification with the HAc-NaAc buffer to show a significantly enhanced oxidase-like property. Surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculation confirm the direct evidence for the formation of specific enhanced intermediate O-O species after acidification, indicating that the insertion of the carboxyl group in the A-Au/LaNiO NFs plays crucial roles in both producing vacancies in HAc-NaAc solution from its dissociation during the catalytic process and the protection of the vacancies, which can be directly interacted with oxygen in the environment to produce O-O species, realizing the enhanced oxidation of substrate molecules.

View Article and Find Full Text PDF

In the hydraulic fracturing process, fracturing fluid contacts coal rock and physical and chemical reactions occur, which inevitably damage the pore structure of the coal rock and affect the adsorption and desorption capacity of the coal rock. In this paper, a low-temperature N adsorption method and scanning electron microscopy (SEM) were used to characterize coal samples. Using gas adsorption/desorption tests, high-, medium-, and low-rank coal samples before and after the clean fracturing fluid treatment were systematically studied.

View Article and Find Full Text PDF