Publications by authors named "Wenhuang Ban"

Plasmid DNA (pDNA) delivery has attracted extensive research interest due to its great potential in gene therapy. The design of efficient nano-vectors to promote cellular delivery and transfection of gene molecules is the key to success. Compared to conventional nanocarriers with spherical geometry, asymmetric nanoparticles have been well documented showing enhanced cellular uptake and drug delivery capability.

View Article and Find Full Text PDF

Pyroptosis is a programmed cell death widely studied in cancer cells for tumour inhibition, but rarely in dendritic cell (DC) activation for vaccine development. Here, we report the synthesis of sodium stabilized mesoporous aluminosilicate nanoparticles as DC pyroptosis modulators and antigen carriers. By surface modification of sodium-stabilized four-coordinate aluminium species on dendritic mesoporous silica nanoparticles, the resultant Na-Al-DMSN significantly activated DC through caspase-1 dependent pyroptosis pH responsive intracellular ion exchange.

View Article and Find Full Text PDF

The direct depletion of lactate accumulated in the tumor microenvironment holds promise for cancer therapy but remains challenging. Herein, we report a one-pot synthesis of openwork@ dendritic mesoporous silica nanoparticles (ODMSNs) to address this problem. ODMSNs self-assembled through a time-resolved lamellar growth mechanism feature an openworked core and a dendritic shell, both constructed by silica nanosheets of ≈3 nm.

View Article and Find Full Text PDF

Hollow spheres are charming objects in nature. In this work, an unexpected deflation-inflation asymmetric growth (DIAG) strategy is reported, generating hollow nanoparticles with tailored concave geometry for interface catalysis. Starting from aminophenol-formaldehyde (APF) nanospheres where the interior crosslinking degree is low, fully deflated nanobowls are obtained after etching by acetone.

View Article and Find Full Text PDF