Background And Aims: Leaf variegation is common in plants and confers diverse adaptive functions. However, its genetic underpinnings remain largely unresolved; this is particularly true for variegation that arises through modified leaf tissue structure that affects light reflection. White clover is naturally polymorphic for structure-based white leaf mark variegation.
View Article and Find Full Text PDFBackground: White clover (Trifolium repens) is a globally important perennial forage legume. This species also serves as an eco-evolutionary model system for studying within-species chemical defense variation; it features a well-studied polymorphism for cyanogenesis (HCN release following tissue damage), with higher frequencies of cyanogenic plants favored in warmer locations worldwide. Using a newly generated haplotype-resolved genome and two other long-read assemblies, we tested the hypothesis that copy number variants (CNVs) at cyanogenesis genes play a role in the ability of white clover to rapidly adapt to local environments.
View Article and Find Full Text PDFSpecies that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines.
View Article and Find Full Text PDFPremise: β-Cyanoalanine synthase (β-CAS) and alternative oxidase (AOX) play important roles in the ability of plants to detoxify and tolerate hydrogen cyanide (HCN). These functions are critical for all plants because HCN is produced at low levels during basic metabolic processes, and especially for cyanogenic species, which release high levels of HCN following tissue damage. However, expression of β-CAS and Aox genes has not been examined in cyanogenic species, nor compared between cyanogenic and acyanogenic genotypes within a species.
View Article and Find Full Text PDFWhite clover (Trifolium repens L.; Fabaceae) is an important forage and cover crop in agricultural pastures around the world and is increasingly used in evolutionary ecology and genetics to understand the genetic basis of adaptation. Historically, improvements in white clover breeding practices and assessments of genetic variation in nature have been hampered by a lack of high-quality genomic resources for this species, owing in part to its high heterozygosity and allotetraploid hybrid origin.
View Article and Find Full Text PDFThe establishment of dorsal-ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in have been identified as (), but which gene regulatory network (GRN) is associated with to establish DV petal asymmetry is still unknown. To uncover the GRN of DV petal asymmetry, we identified 630 DV differentially expressed genes (DV-DEGs) from the RNA-Seq of dorsal and ventral petals in the wild progenitor, 'ES'.
View Article and Find Full Text PDFSpecies of Broussonetia have been essential in the development of papermaking technology. In Japan and Korea, a hybrid between B. monoica and B.
View Article and Find Full Text PDFPremise Of The Study: (Moraceae) is native to Asia and is used as a medicinal plant and as a source of fiber for making paper. It was dispersed into the Pacific region as a fiber source for making nonwoven textiles (barkcloth). Microsatellites were developed to trace the human-mediated dispersal of this species into the Pacific region.
View Article and Find Full Text PDFBackground: Despite being a relatively small genus, the taxonomy of the paper mulberry genus Broussonetia remains problematic. Much of the controversy is related to the identity and taxonomic status of Broussonetia kaempferi var. australis, a name treated as a synonym in the floras of Taiwan and yet accepted in the floras of China.
View Article and Find Full Text PDF