Publications by authors named "Wenhe Liao"

The rapid development of radar detection systems has led to an increased sensitivity to the electromagnetic (EM) scattering properties of detected targets. Flexible and adaptable EM scattering properties significantly enhance the survivability of battlefield weapons. This paper presents the design of a novel multifunctional metamaterial with reconfigurable EM scattering properties based on a bistable curved beam.

View Article and Find Full Text PDF

Riveting is the most important method of joining sheet metal and is widely used in the assembly of aircraft components. The perpendicularity error of the holes is unavoidable during automatic drilling and riveting, which has a significant impact on the quality of the assembly. In this paper, the effects of hole perpendicularity error and squeeze force on the interference fit size, interface contact state, microstructure morphology, fatigue life, and fracture form of riveted joints were investigated experimentally.

View Article and Find Full Text PDF

The utilization of high-viscosity paste jetting technology has the potential to significantly expand the range of available materials and enhance the three-dimensional forming efficiency compared to inkjet printing. In this study, the three-dimensional morphology and contour quality of lines printed using high-viscosity silver paste were investigated. Four types of lines were identified based on differences in the printing shape, and contour fluctuation evaluation indices were defined in both the transverse and longitudinal directions to establish quantitative distinction principles.

View Article and Find Full Text PDF

Polyether-ether-ketone (PEEK) is widely used in the field of biomedical engineering because of its excellent mechanical properties, chemical stability, and biocompatibility. Fused deposition modeling (FDM), which is a typical 3D printing process, can achieve low-cost and high-efficiency printing of complex PEEK structures. However, poor monofilament deposition quality leads to rough surfaces on macroscopic printed parts, low dimensional accuracy, and weak interlayer bonding, which are urgent problems to be solved.

View Article and Find Full Text PDF

The ever-growing aging population has led to an increasing need for removable partial dentures (RPDs) since they are typically the least expensive treatment options for partial edentulism. However, the digital design of RPDs remains challenging for dental technicians due to the variety of partially edentulous scenarios and complex combinations of denture components. To accelerate the design of RPDs, we propose a U-shape network incorporated with Transformer blocks to automatically generate RPD clasps, one of the most frequently used RPD components.

View Article and Find Full Text PDF

In order to deeply investigate the tensile properties and fracture behaviors that are obtained by tensile tests of welded joints, constitutive and damage models are imperative for analyzing the tensile behaviors. In this work, the tensile tests are conducted on the T-welded joint specimens of aluminum alloy 6061-T6, which were cut from the T-welded joints of thin-walled parts under different welding currents of Tungsten Inert Gas Welding (TIGW). A modified Johnson-Cook (J-C) model based on the original J-C equation, Swift model, Voce model, and Hockett-Sherby (H-S) model, their linear combination model, and fracture failure model are constructed and applied to simulate tensile behaviors, combined with tensile test data.

View Article and Find Full Text PDF

Electronic equipment, including phased array radars, satellites, high-performance computers, etc., has been widely used in military and civilian fields. Its importance and significance are self-evident.

View Article and Find Full Text PDF

Traditional honeycomb-like structural electromagnetic (EM)-wave-absorbing materials have been widely used in various equipment as multifunctional materials. However, current EM-wave-absorbing materials are limited by narrow absorption bandwidths and incidence angles because of their anisotropic structural morphology. The work presented here proposes a novel EM-wave-absorbing metastructure with an isotropic morphology inspired by the gyroid microstructures seen in Parides sesostris butterfly wings.

View Article and Find Full Text PDF

In the present work, a novel Ti-Al-C-Nb composite was prepared using in situ selective laser forming (ISLF). The formation mechanism of the Ti-Al-C-Nb bulks, which were synthesized using elemental titanium, aluminum, and carbon (graphite) powders via ISLF techniques, was investigated. The results showed that the TiAl and TiC phases were the dominant synthesis products during the chemical reactions, and these occurred during the ISLF process.

View Article and Find Full Text PDF

Multisized nanoparticles (MPs) are widely employed as electronic materials to form conductive patterns, benefitting from their excellent sintering properties and mechanical reliability. However, due to the lack of effective detection methods for the real-time sintering process, it is difficult to reveal the sintering behavior during the MPs sintering process. In this work, a molecular dynamics method is used to track the trajectory of silver atoms.

View Article and Find Full Text PDF

In the automatic drilling and riveting process, the perpendicular error of the hole is inevitable, which has a great influence on the assembly quality. In the current research, the shear and pull-out behaviors of riveted joints under different perpendicularity errors and squeeze forces were investigated and compared by the quasi-static tests. The fracture of the failed samples was characterized by a scanning electron microscope and the formation process of fracture was discussed.

View Article and Find Full Text PDF

Bio-inspired functionally graded cellular materials (FGCM) have improved performance in energy absorption compared with a uniform cellular material (UCM). In this work, sheet-based and strut-based gyroid cellular structures with graded densities are designed and manufactured by stereo-lithography (SLA). For comparison, uniform structures are also designed and manufactured, and the graded structures are generated with different gradients.

View Article and Find Full Text PDF

In this work, the structural and mechanical characteristics of CuZrAl₇ bulk metallic glass (BMG) fabricated by selective laser melting (SLM) are studied and the impacts from the SLM process are clarified. CuZrAl₇ alloy specimens were manufactured by the SLM method from corresponding gas-atomized amorphous powders. The as-built specimens were examined in terms of phase structure, morphologies, thermal properties and mechanical behavior.

View Article and Find Full Text PDF

The precise estimation of blood vessel centerline and width is a prerequisite condition for the quantitative and visualized diagnosis of blood vessel disease in fundus images. In this paper, a retinal blood vessel segmentation algorithm based on centerline extraction is proposed. According to the characteristics of the fundus image and retinal blood vessels, the image is convoluted with the masks of discrete Gaussian partial derivative kernels.

View Article and Find Full Text PDF

Optimal gingival contours around restored teeth and implants are of critical importance for restorative success and esthetics. This paper describes a novel computer-aided methodology for building a 3-D statistical model of gingival contours from a 3-D scan dental dataset and reconstructing missing gingival contours in partially edentulous patients. The gingival boundaries were first obtained from the 3-D dental model through a discrete curvature analysis and shortest path searching algorithm.

View Article and Find Full Text PDF

The present paper was conducted to a systematic method of surgical guide for dental implant based on computer-aided technology through CT data and dental-cast data. By analyzing the patient's CT data, the implant region was planned using image processing techniques. For the specified implant region, the computer-aided method for the rational allocation of dental implant was addressed in a sense of anatomy.

View Article and Find Full Text PDF

An integrated single-tooth modeling scheme is proposed for the 3D dental model acquired by optical digitizers. The cores of the modeling scheme are fusion regions extraction, single tooth shape restoration, and single tooth separation. According to the "valley" shape-like characters of the fusion regions between two adjoining teeth, the regions of the 3D dental model are analyzed and classified based on the minimum curvatures of the surface.

View Article and Find Full Text PDF

Computer-aided design/computer-aided manufacturing (CAD/CAM) custom abutments have been attracting more and more attention due to their advantages of accuracy fit and esthetic emergence profile. However, the CAD key technology for custom abutments has been seldom studied as well as their biomechanical behavior. This paper explored a novel method to design a CAD/CAM custom angled abutment, evaluated the biomechanical performance of the whole system and compared the difference between the custom and the conventional abutment through 3D nonlinear finite element analysis (FEA).

View Article and Find Full Text PDF

Molar crown is very small and has not only thin-wall, but also complex profile, especially, the occlusal surface of each molar crown has many cusps, ridges and fossae being differently distributed. When conventional processing method is used, it is impossible to machine molar prosthesis rapidly and exactly. To enhance machining velocity and improve the surface precision of molar crown, an algorithm of entity rapid offset-based STL format is put forward.

View Article and Find Full Text PDF

The database with standard 3D tooth crowns has laid the groundwork for dental CAD/CAM system. In this paper, we design the standard tooth crowns in 3DS MAX 9.0 and create a database with these models successfully.

View Article and Find Full Text PDF

The shape of dental arch for orthodontic diagnosis and treatment is of great significance. This paper presents an automated method for detecting the dental arch form. Firstly, 3D teeth data model is retrieved by the 3D-optical measuring system.

View Article and Find Full Text PDF

The curvature scale-space (CSS) technique is suitable for extracting curvature features from objects with noisy boundaries. To detect corner points in a multiscale framework, Rattarangsi and Chin investigated the scale-space behavior of planar-curve corners. Unfortunately, their investigation was based on an incorrect assumption, viz.

View Article and Find Full Text PDF

In view of the instance of a damaged medial incisor, we have introduced a method using computer aided technology to design and manufacture the laminate veneer. Firstly, the data on preparation teeth was retrieved by the 3D-optical measuring system. Secondly, the triangle mesh model of preparation teeth was reconstructed by using the reversion project software.

View Article and Find Full Text PDF

This paper presents a new method of designing restoration model of maxillectomy defect through Computer aided technology. Firstly, 3D maxillectomy triangle mesh model is constructed from Helical CT data. Secondly, the triangle mesh model is transformed into initial computer-aided design (CAD) model of maxillectomy through reverse engineering software.

View Article and Find Full Text PDF

Seeing that the manual method to restore tooth has the disadvantages such as long "lead-time", assurance of quality highly depending on operator's technology, and real-time cure difficulty met by lots of dental patients coming up for tooth restoration, we put forward an algorithm of tool-path generation based on STL data model for roughing dental restoration. The algorithm can reconfigure the STL data of dental crown restoration quickly, can generates the multi-level offset wire-loop by the use of horizontal plane cutting triangle facets; and then on the basis of offset wire-loop, it can plan Zigzag and follow the contour machining tool path. The algorithm has been applied to Dental CAM software, through simulation machining, the result shows that it can not only generate interference-free tool path, but also save a lot of "lead-time" for dental restoration.

View Article and Find Full Text PDF