The current understanding of sensory and motor cortical areas has been defined by the existence of topographical maps across the brain surface, however, higher cortical areas, such as the prefrontal cortex, seem to lack an equivalent organization, and only limited evidence of functional clustering of neurons with similar stimulus properties is evident in them. We thus sought to examine whether neurons that represent similar spatial and object information are clustered in the monkey prefrontal cortex and whether such an organization only emerges as a result of training. To this end, we analyzed neurophysiological recordings from male macaque monkeys before and after training in spatial and shape working memory tasks.
View Article and Find Full Text PDFPrefrontal cortical activity represents stimuli in working memory tasks in a low-dimensional manifold that transforms over the course of a trial. Such transformations reflect specific cognitive operations, so that, for example, the rotation of stimulus representations is thought to reduce interference by distractor stimuli. Here we show that rotations occur in the low-dimensional activity space of prefrontal neurons in naïve male monkeys (Macaca mulatta), while passively viewing familiar stimuli.
View Article and Find Full Text PDFPersistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have challenged this idea. Theories that depend on the dynamic representation of information posit that stimulus information may be maintained by the activity pattern of neurons whose firing rate is not significantly elevated above their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory.
View Article and Find Full Text PDFThe current understanding of sensory and motor cortical areas has been defined by the existence of topographical maps across the brain surface, however, higher cortical areas, such as the prefrontal cortex, seem to lack an equivalent organization, and only limited evidence of functional clustering of neurons with similar stimulus properties is evident in them. We thus sought to examine whether neurons that represent similar spatial and object information are clustered in the monkey prefrontal cortex and whether such an organization only emerges as a result of training. To this end, we analyzed neurophysiological recordings from male macaque monkeys before and after training in spatial and shape working memory tasks.
View Article and Find Full Text PDFUnlabelled: Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have recently challenged this idea. Activity-silent theories posit that stimulus information may be maintained by the activity pattern of neurons that do not produce firing rate significantly elevated about their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory.
View Article and Find Full Text PDFExogenous addition of acyl-homoserine lactone (AHL) signaling molecules can improve or inhibit the methane production performance of anaerobic granular sludge (AnGS) by quorum sensing (QS). To explore the specific effect of AHLs on AnGS, 2 μM of signal molecules were added to the reactor and we analyzed their effects on AnGS biodiversity, extracellular polymeric substance (EPS), specific methanogenic activity (SMA) and chemical oxygen demand (COD) removal rate of AnGS. The results indicated that the four types of AHLs improve the COD removal rate, SMA and organic composition of AnGS.
View Article and Find Full Text PDFThe conversion of activated sludge into high value-added materials, such as sludge carbon (SC), has attracted increasing attention because of its potential for various applications. In this study, the effect of SC carbonized at temperatures of 600, 800, 1000, and 1200 °C on the anode performance of microbial fuel cells and its mechanism are discussed. A pyrolysis temperature of 1000 °C for the loaded electrode (SC1000/CC) generated a maximum areal power density of 2.
View Article and Find Full Text PDFMicrobiota quorum sensing (QS) induced by 3O-C6-HSL (N-(β-ketocaproyl)-DL-homoserine lactone) inhibited the calcification of anaerobic granular sludge (AnGS), and the mechanism of promoting the activity recovery of calcified AnGS was studied in this paper. Through research, it was speculated that 3O-C6-HSL acted on calcified AnGS residual microorganisms to trigger QS. It enriched many functional microorganisms.
View Article and Find Full Text PDFNeurons in the PFC are typically activated by different cognitive tasks, and also by different stimuli and abstract variables within these tasks. A single neuron's selectivity for a given stimulus dimension often changes depending on its context, a phenomenon known as nonlinear mixed selectivity (NMS). It has previously been hypothesized that NMS emerges as a result of training to perform tasks in different contexts.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2021
Given the high content of Ca in waste paper recycling wastewater, the anaerobic granular sludge (AnGS) undergoes calcification during wastewater treatment and affects the treatment efficiency. To restore the activity of calcified AnGS and improve the performance of AnGS, four types of N-acyl-homoserine lactones (AHLs) were added to the AnGS system while papermaking wastewater treatment. The addition of N-butyryl-DL-homoserine lactone(C4-HSL) and N-octanoyl-DL-homoserine lactone (C8-HSL) had an inhibitory affect the COD removal efficiency and SMA of sludge at the inception.
View Article and Find Full Text PDFTo determine whether thalamocortical synaptic circuits differ across cortical areas, we examined the ultrastructure of geniculocortical terminals in the tree shrew striate cortex to compare directly the characteristics of these terminals with those of pulvinocortical terminals (examined previously in the temporal cortex of the same species; Chomsung et al. [] Cereb Cortex 20:997-1011). Tree shrews are considered to represent a prototype of early prosimian primates but are unique in that sublaminae of striate cortex layer IV respond preferentially to light onset (IVa) or offset (IVb).
View Article and Find Full Text PDFThe NMDA receptor and the brain-derived neurotrophic factor (BDNF) are involved in central sensitization and synaptic plasticity in the spinal cord. To determine whether the spinal cord BDNF contributes to the development and maintenance of neuropathic pain by activation of the dorsal horn NR2B-containing NMDA (NMDA-2B) receptors, this study was designed to investigate if alterations in BDNF and its TrkB receptor in the spinal dorsal horn would parallel the timeline of the development of neuropathic pain in lumbar 5 (L5) spinal nerve ligated (SNL) rats. The enzyme-linked immunosorbent assay (ELISA) showed that the BDNF concentration significantly increased during 24 h post-surgery, and the maximal enhancement lasted for 48 h.
View Article and Find Full Text PDF