Publications by authors named "Wenhan Fang"

Background: Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive degeneration of articular cartilage, leading to pain, stiffness, and loss of joint function. The pathogenesis of OA involves multiple factors, including increased intracellular reactive oxygen species (ROS), enhanced chondrocyte apoptosis, and disturbances in cartilage matrix metabolism. These processes contribute to the breakdown of the extracellular matrix (ECM) and the loss of cartilage integrity, ultimately resulting in joint damage and dysfunction.

View Article and Find Full Text PDF

pH buffer plays versatile roles in both biology and chemistry. In this study, we unravel the critical role of pH buffer in accelerating degradation of the lignin substrate in lignin peroxidase (LiP) using QM/MM MD simulations and the nonadiabatic electron transfer (ET) and proton-coupled electron transfer (PCET) theories. As a key enzyme involved in lignin degradation, LiP accomplishes the oxidation of lignin via two consecutive ET reactions and the subsequent C-C cleavage of the lignin cation radical.

View Article and Find Full Text PDF

It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp and sp C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963).

View Article and Find Full Text PDF

This Account describes the manner whereby nature controls the Fenton-type reaction of O-O homolysis of hydrogen peroxide and harnesses it to carry out various useful oxidative transformations in metalloenzymes. HO acts as the cosubstrate for the heme-dependent peroxidases, P450BM3, P450, P450, and the P450 decarboxylase OleT, as well as the nonheme enzymes HppE and the copper-dependent lytic polysaccharide monooxygenases (LPMOs). Whereas heme peroxidases use the Poulos-Kraut heterolytic mechanism for HO activation, some heme enzymes prefer the alternative Fenton-type mechanism, which produces •OH radical intermediates.

View Article and Find Full Text PDF

Cluster-continuum model calculations were conducted to decipher the mechanism of water oxidation catalyzed by a mononuclear copper complex. Among various O-O bond formation mechanisms investigated in this study, the most favorable pathway involved the nucleophilic attack of OH onto the L-Cu -OH intermediate. During such process, the initial binding of OH to the proximity of L-Cu -OH would result in the spontaneous oxidation of OH , leading to OH⋅ radical and Cu -OH species.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionairp1701rlttq1ulb2npidjstrctk7fs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once