Unraveling the robust self-adaptivity and minimal energy-dissipation of soft reticular materials for environmental catalysis presents a compelling yet unexplored avenue. Herein, a top-down strategy, tailoring from the unique linkage basis, flexibility degree, skeleton electronics to trace-guest adaptability, is proposed to fill the understanding gap between micro-soft covalent organic frameworks (COFs) and photocatalytic performance. The thio(urea)-basis-dominated linkage within benzotrithiophene-based COFs induce the framework contraction/swelling (intralayer micro-flexibility) in response to tetrahydrofuran or water.
View Article and Find Full Text PDFCu-based catalysts are promising candidates for CO reduction owing to the favorable energetics of Cu sites for CO adsorption and transformation. However, CO reduction involving insurmountable activation barriers and various byproducts remains a significant challenge to achieve high activity and selectivity. Herein, a photocatalyst constructed with single-Ru-site-on-Cu-nanoparticle on BiTiO exhibits exceptional activity and selectivity for CO conversion to CO.
View Article and Find Full Text PDFMXenes, a class of two-dimensional transition metal carbides, nitrides, and carbonitrides, have garnered significant attention due to their remarkable potential for energy storage, electrocatalysis, and gas separation applications. The fabrication processes of MXene involve building up the MXene structure from constituent elements and the selective elimination of M-A bonds from the precursor MAX. However, considerable efforts are still required to design and develop efficient MXene-based technologies.
View Article and Find Full Text PDFIt has long been known that the thermal catalyst Cu/ZnO/AlO(CZA) can enable remarkable catalytic performance towards CO hydrogenation for the reverse water-gas shift (RWGS) and methanol synthesis reactions. However, owing to the direct competition between these reactions, high pressure and high hydrogen concentration (≥75%) are required to shift the thermodynamic equilibrium towards methanol synthesis. Herein, a new black indium oxide with photothermal catalytic activity is successfully prepared, and it facilitates a tandem synthesis of methanol at a low hydrogen concentration (50%) and ambient pressure by directly using by-product CO as feedstock.
View Article and Find Full Text PDFPhotoelectrochemical (PEC) hydrogen production from water splitting is a green technology that can solve the environmental and energy problems through converting solar energy into renewable hydrogen fuel. The construction of host/guest architecture in semiconductor photoanodes has proven to be an effective strategy to improve solar-to-fuel conversion efficiency dramatically. In host/guest photoanodes, the absorber layer is deposited onto a high-surface-area electron collector, resulting in a significant enhancements in light-harvesting as well as charge collection and separation efficiency.
View Article and Find Full Text PDFMechanistic understanding of the photogenerated charge carrier dynamics in modified semiconductor photoanodes is vital for the efficient enhancement of photoelectrochemical (PEC) water splitting. Here, an in situ femtosecond (fs)-transient absorption spectroscopy (TAS) assisted spectroelectrochemistry technique is used to probe the behavior of charge carriers in rutile TiO nanorod photoanodes under the different applied potentials and different density of surface polaron states that can be tuned via direct electrochemical protonation. We interpreted the background absorption with long-time decay in terms of polaron-mediated ultrafast electron trapping.
View Article and Find Full Text PDFThe unique InVO mesocrystal superstructure, particularly with cubical skeleton and hollow interior, which consists of numerous nanocube building blocks, closely stacking by stacking, aligning by aligning, and sharing the same crystallographic orientations, is successfully fabricated. The synergy of a reaction-limited aggregation and an Ostwald ripening process is reasonably proposed for the growth of this unique superstructure. Both single-particle surface photovoltage and confocal fluorescence spectroscopy measurements demonstrate that the long-range ordered mesocrystal superstructures can significantly retard the recombination of electron-hole pairs through the creation of a new pathway for anisotropic electron flow along the inter-nanocubes.
View Article and Find Full Text PDFDespite the tremendous progress of coupling organic electrooxidation with hydrogen generation in a hybrid electrolysis, electroreforming of raw biomass coupled to green hydrogen generation has not been reported yet due to the rigid polymeric structures of raw biomass. Herein, we electrooxidize the most abundant natural amino biopolymer chitin to acetate with over 90% yield in hybrid electrolysis. The overall energy consumption of electrolysis can be reduced by 15% due to the thermodynamically and kinetically more favorable chitin oxidation over water oxidation.
View Article and Find Full Text PDFA simple solvent ligation effect was successfully used to disrupt the growth of a model compound, Fe[(OH)(O P(CH ) CO H)]⋅H O (MIL-37), into an extended 2D structure by replacing water with dimethylformamide (DMF) as the solvent during the synthesis. Owing to the lack of -OH group, which provides the corner-sharing (binding) oxygen atoms for the octahedra, an amorphous and porous structure is formed. When Fe is partially replaced by Ni , the amorphous structure remains and the resultant binary metal catalyst displays excellent photocatalytic oxygen evolution activity with almost 100 % yield achieved under visible light irradiation using [Ru(bpy) ] as the photosensitizer.
View Article and Find Full Text PDFPhotocatalytic reduction of CO to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO molecules and determine the reaction selectivity. Herein, we synthesize a well-defined copper-based boron imidazolate cage (BIF-29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO .
View Article and Find Full Text PDFHalide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome. To circumvent these obstacles, we anchored CsPbBr QDs (CPB) on NH -rich porous g-C N nanosheets (PCN) to construct the composite photocatalysts via N-Br chemical bonding. The 20 CPB-PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 μmol h g in acetonitrile/water for photocatalytic reduction of CO to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr QDs.
View Article and Find Full Text PDFA Pt /Pt hybrid nanodot-modified graphitic carbon nitride (CN) photocatalyst (CNV-P) was fabricated for the first time using a chemical reduction method, during which nitrogen vacancies in g-C N assist to stabilize Pt species. It is elucidated that the coexistence of metallic Pt and Pt species in the Pt nanodots loaded on g-C N results in superior photocatalytic H evolution performance with very low Pt loadings. The turnover frequencies (TOFs) are 265.
View Article and Find Full Text PDFWater and energy are key sustainability issues that need to be addressed. Photocatalysis represents an attractive means to not only remediate polluted waters, but also harness solar energy. Unfortunately, the employment of photocatalysts remains a practical challenge in terms of high cost, low efficiency, secondary pollution and unexploited water matrices influence.
View Article and Find Full Text PDFCrystalline frameworks including primarily metal organic frameworks (MOF) and covalent organic frameworks (COF) have received much attention in the field of heterogeneous catalysts recently. Beyond providing large surface area and spatial confinement, these crystalline frameworks can be designed to either directly act as or influence the catalytic sites at molecular level. This approach offers a unique advantage to gain deeper insights of structure-activity correlations in solid materials, leading to new guiding principles for rational design of advanced solid catalysts for potential important applications related to energy and fine chemical synthesis.
View Article and Find Full Text PDFMaterials of perovskite-type structure have attracted considerable attention for their applications in photocatalysis. In this study, a novel composite of p-type LaFeO microsphere coated with n-type nanosized graphitic carbon nitride nanosheets was constructed by the quasi-polymeric calcination method with the aid of electrostatic self-assembly interaction. Results indicate that the LaFeO/g-CNp-n heterostructured photocatalyst obtained, in contrast to the pure constituents, enabled improved visible-light absorption, and more efficient separation and migration of charge carriers via solid p-n heterojunction interfacial effect.
View Article and Find Full Text PDFIn this work, a one-pot solution method for direct synthesis of interconnected ultrafine amorphous NiFe-layered double hydroxide (NiFe-LDH) (<5 nm) and nanocarbon using the molecular precursor of metal and carbon sources is presented for the first time. During the solvothermal synthesis of NiFe-LDH, the organic ligand decomposes and transforms to amorphous carbon with graphitic nanodomains by catalytic effect of Fe. The confined growth of both NiFe-LDH and carbon in one single sheet results in fully integrated amorphous NiFe-LDH/C nanohybrid, allowing the harness of the high intrinsic activity of NiFe-LDH due to (i) amorphous and distorted LDH structure, (ii) enhanced active surface area, and (iii) strong coupling between the active phase and carbon.
View Article and Find Full Text PDFTwo-dimensional MoS nanosheets were in situ grown on TiO nanosheets to form two-dimensional (2D) hybrid nanojunctions, with which MoS nanosheets compactly contact with TiO to increase the interfacial area. MoS was identified as a promising cost-effective substitute for noble metal cocatalysts such as Pt, Au, and Ag, and shows superior activity and selectivity for reducing CO to CHOH in aqueous solution to these metal cocatalysts under UV-vis light irradiation. The photo-luminescence (PL) spectra and transient time-resolved PL decay measurements reveal that the fast electron transfer from TiO to MoS can minimize charge recombination losses to improve the conversion efficiency of photoreduction.
View Article and Find Full Text PDFPhotocatalytic hydrogen (H) evolution from water splitting is attracting enormous interest due to the possibility of converting solar energy into green chemical energy. The construction of highly efficient and stable photocatalysts is of importance and necessary for the development of photocatalytic water splitting technology. In this study, we have developed a self-template synthetic strategy for the preparation of heterostructured nanohybrids composed of ultrasmall CdS and NiS nanoparticles by using Cd(ii)-Ni(ii)-(4,4'-bipyridine) coordination polymers as the precursor and template.
View Article and Find Full Text PDFNickel nanoparticles encapsulated in few-layer nitrogen-doped graphene (Ni@NC) are synthesized by using a Ni-based metal-organic framework as the precursor for high-temperature annealing treatment. The resulting Ni@NC materials exhibit highly efficient and ultrastable electrocatalytic activity toward the hydrogen evolution reaction and the oxygen evolution reaction as well as overall water splitting in alkaline environment.
View Article and Find Full Text PDFSemiconductor photocatalysts have attracted increased attention due to their great potential for solving energy and environmental problems. The formation of Z-scheme photocatalytic systems that mimic natural photosynthesis is a promising strategy to improve photocatalytic activity that is superior to single component photocatalysts. The connection between photosystem I (PS I) and photosystem II (PS II) are crucial for constructing efficient Z-scheme photocatalytic systems using two photocatalysts (PS I and PS II).
View Article and Find Full Text PDFThe photocatalytic reduction of CO2 over Ag/TiO2 composites prepared with a simple silver mirror reaction method was investigated under UV-visible irradiation in both gas-phase (CO2 + water vapor) and aqueous solution (CO2-saturated NaHCO3 solution) systems. The as-prepared Ag/TiO2 nanocomposite exhibits efficient photocatalytic activity due to the surface plasmonic resonance and electron sink effect of the Ag component, which was found to be closely related to the size and loading amount of Ag. The rapid silver method is effective at curbing the size of Ag, so photocatalytic activity can be improved.
View Article and Find Full Text PDFExploiting photocatalysts respond to visible light is of huge challenge for photocatalytic H2 production. Here, we synthesize a new composite material consisting of few-layer MoS2 nanosheets grown on CuInS2 surface as an efficient photocatalyst for solar H2 generation. The photocatalytic results demonstrate that the 3 wt % MoS2 /CuInS2 photocatalyst exhibits the highest H2 generation rate of 316 μmol h(-1) g(-1) under visible light irradiation, which is almost 28 times higher than that of CuInS2 .
View Article and Find Full Text PDFChem Commun (Camb)
September 2015
Here we report multilayer hollow spheres consisting of alternating ultrathin Ti0.91O2 nanosheets and CdS nanoparticles via exquisite layer-by-layer self-assembly to achieve an all solid-state Z-scheme system with 7-times enhancement of the CH4-production rate relative to pure Ti0.91O2 hollow spheres, due to a greatly prolonged lifetime of charge carriers.
View Article and Find Full Text PDFAn electric field in a photocatalytic system consisting of Au@TiO2 yolk-shell hollow spheres is created to enhance the generation of electron-hole pairs and remit the charge-carrier recombination. Local surface plasmon resonance (LSPR)-mediated local electromagnetic field nearby Au nanoparticles cannot only enhance the local generation and subsequent separation of electron-hole pairs in TiO2 shells to improve the photoreduction yield of CO2, but also facilitate chemical reactions involving multiple e(-)/H(+) transfer processes to allow the formation of high-grade carbon species (C2H6), which was rarely observed in precedent CO2 photocatalytic reduction systems. The work may provide a new viewpoint for designing photocatalysts for artificial photosynthesis involving multiple reactions.
View Article and Find Full Text PDF