KRAS is the most frequently dysregulated oncogene with a high prevalence in non-small cell lung cancer, colorectal cancer, and pancreatic cancer. FDA-approved sotorasib and adagrasib provide breakthrough therapies for patients with cancer with KRASG12C mutation. However, there is still high unmet medical need for new agents targeting broader KRAS-driven tumors.
View Article and Find Full Text PDFStructure-based generative chemistry is essential in computer-aided drug discovery by exploring a vast chemical space to design ligands with high binding affinity for targets. However, traditional in silico methods are limited by computational inefficiency, while machine learning approaches face bottlenecks due to auto-regressive sampling. To address these concerns, we have developed a conditional deep generative model, PMDM, for 3D molecule generation fitting specified targets.
View Article and Find Full Text PDFIt has been well established that cancer cells can evade immune surveillance by mutating themselves. Understanding genetic alterations in cancer cells that contribute to immune regulation could lead to better immunotherapy patient stratification and identification of novel immune-oncology (IO) targets. In this report, we describe our effort of genome-wide association analyses across 22 TCGA cancer types to explore the associations between genetic alterations in cancer cells and 74 immune traits.
View Article and Find Full Text PDFSelective CDK2 inhibitors have the potential to provide effective therapeutics for CDK2-dependent cancers and for combating drug resistance due to high cyclin E1 (CCNE1) expression intrinsically or CCNE1 amplification induced by treatment of CDK4/6 inhibitors. Generative models that take advantage of deep learning are being increasingly integrated into early drug discovery for hit identification and lead optimization. Here we report the discovery of a highly potent and selective macrocyclic CDK2 inhibitor QR-6401 () accelerated by the application of generative models and structure-based drug design (SBDD).
View Article and Find Full Text PDFSomatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of G-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of G-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively.
View Article and Find Full Text PDFThe glucagon-like peptide-1 (GLP-1) receptor is a validated drug target for metabolic disorders. Ago-allosteric modulators are capable of acting both as agonists on their own and as efficacy enhancers of orthosteric ligands. However, the molecular details of ago-allosterism remain elusive.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R) belongs to the secretin receptor family and is widely distributed in the central neural system and peripheral organs. Abnormal activation of the receptor mediates trigeminovascular activation and sensitization, which is highly related to migraine, making PAC1R a potential therapeutic target. Elucidation of PAC1R activation mechanism would benefit discovery of therapeutic drugs for neuronal disorders.
View Article and Find Full Text PDFDeveloping antibody agonists targeting the human apelin receptor (APJ) is a promising therapeutic approach for the treatment of chronic heart failure. Here, we report the structure-guided discovery of a single-domain antibody (sdAb) agonist JN241-9, based on the cocrystal structure of APJ with an sdAb antagonist JN241, the first cocrystal structure of a class A G protein-coupled receptor (GPCR) with a functional antibody. As revealed by the structure, JN241 binds to the extracellular side of APJ, makes critical contacts with the second extracellular loop, and inserts the CDR3 into the ligand-binding pocket.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, which is arguably the most important family of drug target. With the technology breakthroughs in X-ray crystallography and cryo-electron microscopy, more than 300 GPCR-ligand complex structures have been publicly reported since 2007, covering about 60 unique GPCRs. Such abundant structural information certainly will facilitate the structure-based drug design by targeting GPCRs.
View Article and Find Full Text PDFOptimal conditions for palladium-promoted Heck reaction on DNA were developed with good to excellent conversions. Versatility with either DNA-conjugated styrene/acrylamide or aryl iodide and a broad substrate scope of the corresponding coupling partners were established. Furthermore, robustness of the Heck reaction conditions on single-strand DNA and feasibility for DNA-encoded library production were demonstrated.
View Article and Find Full Text PDFBiased ligands of G protein-coupled receptors (GPCRs) may have improved therapeutic benefits and safety profiles. However, the molecular mechanism of GPCR biased signaling remains largely unknown. Using apelin receptor (APJ) as a model, we systematically investigated the potential effects of amino acid residues around the orthosteric binding site on biased signaling.
View Article and Find Full Text PDFThe synthesis of pyridazines on DNA has been developed on the basis of inverse-electron-demand Diels-Alder (IEDDA) reactions of 1,2,4,5-tetrazines. The broad substrate scope is explored. Functionalized pyridazine products are selected for subsequent DNA-compatible Suzuki-Miyaura coupling, acylation, and SAr substitution reactions, demonstrating the feasibility and versatility of IEDDA reactions for DNA-encoded library synthesis.
View Article and Find Full Text PDFTransient-receptor-potential melastatin 8 (TRPM8), the predominant mammalian cold-temperature thermosensor, is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system, including nerve circuitry implicated in migraine pathogenesis: the trigeminal and pterygopalatine ganglia. Genomewide association studies have identified an association between TRPM8 and reduced risk of migraine. This disclosure focuses on medicinal-chemistry efforts to improve the druglike properties of initial leads, particularly removal of CYP3A4-induction liability and improvement of pharmacokinetic properties.
View Article and Find Full Text PDFThe first example of DNA-compatible C-H activation reaction between DNA-conjugated acrylamides and aromatic acids has been developed. This new transformation enables aromatic acid, previously considered as monofunctional building block, to act like a bifunctional building block for the DNA encoded library synthesis. The general scope of aromatic acid was established for this new on-DNA C-H activation, which paved the way for its application in combinatorial library preparation.
View Article and Find Full Text PDFApelin receptor (APJR) is a key regulator of human cardiovascular function and is activated by two different endogenous peptide ligands, apelin and Elabela, each with different isoforms diversified by length and amino acid sequence. Here we report the 2.6-Å resolution crystal structure of human APJR in complex with a designed 17-amino-acid apelin mimetic peptide agonist.
View Article and Find Full Text PDFAberrant hepatocyte growth factor (HGF)/MET signaling has been implicated in hepatocarcinogenesis, suggesting that MET may serve as an attractive therapeutic target in hepatocellular carcinoma. We sought to investigate the in vitro and in vivo antitumor activity of AMG 337, a potent and highly selective small molecule MET kinase inhibitor, in preclinical models of hepatocellular carcinoma. The antiproliferative activity of AMG 337 was evaluated across a panel of hepatocellular carcinoma cell lines in a viability assay.
View Article and Find Full Text PDFThe β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is one of the most hotly pursued targets for the treatment of Alzheimer's disease. We used a structure- and property-based drug design approach to identify 2-aminooxazoline 3-azaxanthenes as potent BACE1 inhibitors which significantly reduced CSF and brain Aβ levels in a rat pharmacodynamic model. Compared to the initial lead 2, compound 28 exhibited reduced potential for QTc prolongation in a non-human primate cardiovascular safety model.
View Article and Find Full Text PDFWe describe a systematic study of how macrocyclization in the P₁-P₃ region of hydroxyethylamine-based inhibitors of β-site amyloid precursor protein (APP)-cleaving enzyme (BACE1) modulates in vitro activity. This study reveals that in a number of instances macrocyclization of bis-terminal dienes leads to improved potency toward BACE1 and selectivity against cathepsin D (CatD), as well as greater amyloid β-peptide (Aβ)-lowering activity in HEK293T cells stably expressing APPSW. However, for several closely related analogs the benefits of macrocyclization are attenuated by the effects of other structural features in different regions of the molecules.
View Article and Find Full Text PDFWe report the discovery of a novel series of biaryl ethers as potent and selective PDE10A inhibitors. Structure-activity studies improved the potency and decreased Pgp-mediated efflux found in the initial compound 4. X-ray crystallographic studies revealed two novel binding modes to the catalytic site of the PDE10A enzyme.
View Article and Find Full Text PDFβ-Secretase inhibitors are potentially disease-modifying treatments for Alzheimer's disease. Previous efforts in our laboratory have resulted in hydroxyethylamine-derived inhibitors such as 1 with low nanomolar potency against β-site amyloid precursor protein cleaving enzyme (BACE). When dosed intravenously, compound 1 was also shown to significantly reduce Aβ40 levels in plasma, brain, and cerebral spinal fluid.
View Article and Find Full Text PDFSequential proteolytic cleavage of the amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex produces the amyloid-β peptide (Aβ), which is believed to play a critical role in the pathology of Alzheimer's disease (AD). The aspartyl protease BACE1 catalyzes the rate-limiting step in the production of Aβ, and as such it is considered to be an important target for drug development in AD. The development of a BACE1 inhibitor therapeutic has proven to be difficult.
View Article and Find Full Text PDFThe synthesis and SAR of a series of BACE-1 hydroxyethyl amine inhibitors containing substitutions on a spirocyclobutyl moiety is described. Selectivity against cathepsin D, a related aspartyl protease with potential off target toxicity, and improved microsomal stability is exemplified.
View Article and Find Full Text PDF