The integration of different two-dimensional materials within a multilayer van der Waals (vdW) heterostructure offers a promising technology for high performance opto-electronic devices such as photodetectors and light sources. Here we report on the fabrication and electronic properties of vdW heterojunction diodes composed of the direct band gap layered semiconductors InSe and GaSe and transparent monolayer graphene electrodes. We show that the type II band alignment between the two layered materials and their distinctive spectral response, combined with the short channel length and low electrical resistance of graphene electrodes, enable efficient generation and extraction of photoexcited carriers from the heterostructure even when no external voltage is applied.
View Article and Find Full Text PDFAtomically thin layered two-dimensional materials, including transition-metal dichalcogenide (TMDC) and black phosphorus (BP), have been receiving much attention, because of their promising physical properties and potential applications in flexible and transparent electronic devices. Here, for the first time we show nonvolatile charge-trap memory devices, based on field-effect transistors with large hysteresis, consisting of a few-layer black phosphorus channel and a three dimensional (3D) Al2O3/HfO2/Al2O3 charge-trap gate stack. An unprecedented memory window exceeding 12 V is observed, due to the extraordinary trapping ability of the high-k HfO2.
View Article and Find Full Text PDFA critical challenge for the integration of optoelectronics is that photodetectors have relatively poor sensitivities at the nanometer scale. Generally, a large electrodes spacing in photodetectors is required to absorb sufficient light to maintain high photoresponsivity and reduce the dark current. However, this will limit the optoelectronic integration density.
View Article and Find Full Text PDF