Publications by authors named "Wengan Wang"

The recent wave of the artificial intelligence (AI) revolution has aroused unprecedented interest in the intelligentialize of human society. As an essential component that bridges the physical world and digital signals, flexible sensors are evolving from a single sensing element to a smarter system, which is capable of highly efficient acquisition, analysis, and even perception of vast, multifaceted data. While challenging from a manual perspective, the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm (machine learning) and the framework (artificial synapses) level.

View Article and Find Full Text PDF

The booming development of electronic skins necessitates stretchable electrodes and flexible sensors that exhibit distinctly opposite requirements of electromechanical properties, both of which are difficult to be fulfilled on a single material. Here, a pufferfish-inspired, interlayer regulation strategy is proposed that realizes the above opposite properties in simple metal films, exhibiting either ultra-stretchability (295% strain) or sensitivity (maximum GF: ∼5500) on demand. It is revealed that the stretchability of the intrinsically strain-sensitive metal films can be improved by ∼20-fold regulating the surface morphology of the inserted interlayer, accompanied by an intriguing transition in film cracking behavior from cut-through cracks to network patterns.

View Article and Find Full Text PDF

Future electronic skin systems require stretchable conductors and low-temperature integration of external components, which remains challenging for traditional metal films. Herein, a bioinspired design concept is reported to endow metal films with 200% stretchability as well as room-temperature integration capability with diverse components. It is revealed that by controllable implantation of defects, distinctive venation-mimicking cracking modes can be induced in strained metal films, leading to profound stretchability regulation.

View Article and Find Full Text PDF

The integration of 2D materials with other dimensional materials opens up rich possibilities for both fundamental physics and exotic nanodevices. However, current mixed-dimensional heterostructures often suffer from interfacial contact issues and environment-induced degradation, which severely limits their performance in electronics/optoelectronics. Herein, we demonstrate a novel BN-encapsulated CuO/MoS 2D-1D van der Waals heterostructure photodetector with an ultrahigh photoresponsivity which is 10-fold higher than its previous 2D-1D counterparts.

View Article and Find Full Text PDF

2D materials exhibit intriguing electrical and optical properties, making them promising candidates for next-generation nanoelectronic devices. However, the high contact resistance of 2D materials to electrode material often limits the ultimate performance and potential of 2D materials and devices. In this work, we demonstrate a localized femtosecond (fs) laser irradiation process to substantially minimize the resistance of MoS-metal contacts.

View Article and Find Full Text PDF

The accretion of frost on heat exchanging surfaces through the freezing of condensed water in cold and humid environments significantly reduces the operating efficiency of air-source heat pumps, refrigerators and other cryogenic equipment. The construction of hierarchical micro-nanostructured SHSs, with the ability to timely remove condensed water before freezing via self-propelled droplet jumping, serves as a promising anti-frosting strategy. However, the actual relationship between microstructural features and water removal capability through droplet jumping is still not clear, hindering the further optimization of anti-frosting SHSs.

View Article and Find Full Text PDF

Ag-Cu bimetallic nanoparticles, combining the advantages of both Ag and Cu, are a promising material for power electronic packaging. In this work, a supersaturated Ag-7.3 wt % Cu alloy nanoparticle film was developed by using pulsed laser deposition.

View Article and Find Full Text PDF

Preventing condensation frosting is crucial for air conditioning units, refrigeration systems, and other cryogenic equipment. Coalescence-induced self-propelled jumping of condensed microdroplets on superhydrophobic surfaces serves as a favorable strategy against condensation frosting. In previous reports, efforts were dedicated to enhance the efficiency of self-propelled jumping by constructing appropriate surface structures on superhydrophobic surfaces.

View Article and Find Full Text PDF

Decreasing the interconnecting temperature is essential for 3D and heterogeneous device integrations, which play indispensable roles in the coming era of "more than Moore". Although nanomaterials exhibit a decreased onset temperature for interconnecting, such an effect is always deeply impaired because of organic additives in practical integrations. Meanwhile, current organic-free integration strategies suffer from roughness and contaminants at the bonding interface.

View Article and Find Full Text PDF