Publications by authors named "Weng-Hang Leong"

Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered.

View Article and Find Full Text PDF

Correlated translation-orientation tracking of single particles can provide important information for understanding the dynamics of live systems and their interaction with the probes. However, full six-dimensional (6D) motion tracking has yet to be achieved. Here, we developed synchronized 3D translation and 3D rotation tracking of single diamond particles based on nitrogen-vacancy center sensing.

View Article and Find Full Text PDF

Nitrogen-vacancy (NV) centers in diamond are promising quantum sensors because of their long spin coherence time under ambient conditions. However, their spin resonances are relatively insensitive to non-magnetic parameters such as temperature. A magnetic-nanoparticle-nanodiamond hybrid thermometer, where the temperature change is converted to the magnetic field variation near the Curie temperature, were demonstrated to have enhanced temperature sensitivity ([Formula: see text]) (Wang N, Liu G-Q and Leong W-H .

View Article and Find Full Text PDF

Spatially resolved information about material deformation upon loading is critical to evaluating mechanical properties of materials, and to understanding mechano-response of live systems. Existing techniques may access local properties of materials at nanoscale, but not at locations away from the force-loading positions. Moreover, interpretation of the local measurement relies on correct modeling, the validation of which is not straightforward.

View Article and Find Full Text PDF

Diamond nitrogen-vacancy (NV) center-based magnetometry provides a unique opportunity for quantum bio-sensing. However, NV centers are not sensitive to parameters such as temperature and pressure, and immune to many biochemical parameters such as pH and non-magnetic biomolecules. Here, we propose a scheme that can potentially enable the measurement of various biochemical parameters using diamond quantum sensing, by employing stimulus-responsive hydrogels as a spacing transducer in-between a nanodiamond (ND, with NV centers) and magnetic nanoparticles (MNPs).

View Article and Find Full Text PDF