Ab initio calculations of the phonon-induced band structure renormalization are currently based on the perturbative Allen-Heine theory and its many-body generalizations. These approaches are unsuitable to describe materials where electrons form localized polarons. Here, we develop a self-consistent, many-body Green's function theory of band structure renormalization that incorporates localization and self-trapping.
View Article and Find Full Text PDFWe develop a formalism and a computational method to study polarons in insulators and semiconductors from first principles. Unlike in standard calculations requiring large supercells, we solve a secular equation involving phonons and electron-phonon matrix elements from density-functional perturbation theory, in a spirit similar to the Bethe-Salpeter equation for excitons. We show that our approach describes seamlessly large and small polarons, and we illustrate its capability by calculating wave functions, formation energies, and spectral decomposition of polarons in LiF and Li_{2}O_{2}.
View Article and Find Full Text PDF