Publications by authors named "Wendy Winchester"

The ability to sense visceral pain during appendicitis is diminished with age leading to delay in seeking health care and poorer clinical outcomes. To understand the mechanistic basis of this phenomenon, we examined visceral nociception in aged mouse and human tissue. Inflamed and noninflamed appendixes were collected from consenting patients undergoing surgery for the treatment of appendicitis or bowel cancer.

View Article and Find Full Text PDF

We developed a mathematical model of colon physiology driven by serotonin signaling in the enteric nervous system. No such models are currently available to assist drug discovery and development for GI motility disorders. Model parameterization was informed by published preclinical and clinical data.

View Article and Find Full Text PDF

Objective: Integration of nutritional, microbial and inflammatory events along the gut-brain axis can alter bowel physiology and organism behaviour. Colonic sensory neurons activate reflex pathways and give rise to conscious sensation, but the diversity and division of function within these neurons is poorly understood. The identification of signalling pathways contributing to visceral sensation is constrained by a paucity of molecular markers.

View Article and Find Full Text PDF

PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature.

View Article and Find Full Text PDF

Key Points: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype Na 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown.

View Article and Find Full Text PDF

Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g.

View Article and Find Full Text PDF

High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss.

View Article and Find Full Text PDF

The transient receptor potential (subfamily M, member 8; TRPM8) is a nonselective cation channel localized in primary sensory neurons, and is a candidate for cold thermosensing, mediation of cold pain, and bladder overactivity. Studies with TRPM8 knockout mice and selective TRPM8 channel blockers demonstrate a lack of cold sensitivity and reduced cold pain in various rodent models. Furthermore, TRPM8 blockers significantly lower body temperature.

View Article and Find Full Text PDF

Chronic visceral pain affects millions of individuals worldwide and remains poorly understood, with current therapeutic options constrained by gastrointestinal adverse effects. Visceral pain is strongly associated with inflammation and distension of the gut. Here we report that the voltage-gated sodium channel subtype NaV1.

View Article and Find Full Text PDF

Visceral hypersensitivity and an increased response to stress are two of the main symptoms of irritable bowel syndrome. Thus efforts to develop animal models of irritable bowel syndrome have centred on both of these parameters. The anticonvulsant gabapentin, which is widely used as an analgesic agent, also reduces anxiety.

View Article and Find Full Text PDF

The release of calcitonin gene-related peptide (CGRP) plays a key role gastrointestinal tract homeostasis. We aimed to investigate mechanisms that mediate CGRP release from the rat colon in vitro. Colon segments were stimulated and the amount of CGRP released was measured using an enzyme immunoassay.

View Article and Find Full Text PDF

Studies in healthy human subjects and patients with irritable bowel syndrome suggest sex differences in cerebral nociceptive processing. Here we examine sex differences in functional brain activation in the rat during colorectal distention (CRD), a preclinical model of acute visceral pain. [(14)C]-iodoantipyrine was injected intravenously in awake, non-restrained female rats during 60- or 0-mmHg CRD while electromyographic abdominal activity (EMG) and pain behavior were recorded.

View Article and Find Full Text PDF

We describe the medicinal chemistry programme that led to the identification of the EP(1) receptor antagonist GSK269984A (8h). GSK269984A was designed to overcome development issues encountered with previous EP(1) antagonists such as GW848687X and was found to display excellent activity in preclinical models of inflammatory pain. However, upon cross species pharmacokinetic profiling, GSK269984A was predicted to have suboptimal human pharmacokinetic and was thus progressed to a human microdose study.

View Article and Find Full Text PDF

P2Y receptors have been reported to modulate gastrointestinal functions. The newest family member is the nucleotide-sugar receptor P2Y14. P2ry14 mRNA was detected throughout the rat gut, with the highest level being in the forestomach.

View Article and Find Full Text PDF

Herein we describe the medicinal chemistry programme to identify a potential back-up compound to the EP(1) receptor antagonist GW848687X. This work started with the lipophilic 1,2-biaryl benzene derivative 4 which displayed molecular weight of 414.9g/mol and poor in vivo metabolic stability in the rat and resulted in the identification of compound 7i (GSK345931A) which demonstrated good metabolic stability in the rat and lower molecular weight (381.

View Article and Find Full Text PDF

Preclinical drug development for visceral pain has largely relied on quantifying pseudoaffective responses to colorectal distension (CRD) in restrained rodents. However, the predictive value of changes in simple reflex responses in rodents for the complex human pain experience is not known. Male rats were implanted with venous cannulas and with telemetry transmitters for abdominal electromyographic (EMG) recordings.

View Article and Find Full Text PDF

Background & Aims: Although the beta(3)-adrenoceptor (AR) has been suggested to be involved in regulation of gut motility and visceral algesia, the precise mechanisms have been unknown. beta(3)-AR has been postulated to have a nonneuronal expression, being initially characterized in adipocytes and subsequently in the smooth muscle. We aimed to investigate the expression of beta(3)-AR in human enteric nervous system and its role in motility and visceral algesia.

View Article and Find Full Text PDF

Somatostatin is an inhibitory peptide present in abundance in the gastrointestinal (GI) tract. The effects of somatostatin are mediated through its interaction with a family of G-protein-coupled receptors, namely sst1-5. Previous evidence suggested that the sst2 receptor mediates an inhibitory role of somatostatin on GI afferent nerve sensitivity.

View Article and Find Full Text PDF

A high-throughput screen targeting the EP(1) receptor identified non-acidic glycine sulfonamide derivative 2a with a pK(i) of 6.2. Analogue synthesis allowed a thorough investigation of the structure-activity relationship (SAR) and led to a 100-fold increase in recombinant potency.

View Article and Find Full Text PDF

Despite its beneficial effect in IBS patients, the mechanism of action of the 5-HT3 receptor (5-HT3R) antagonist alosetron is still incompletely understood. We aimed to characterize the effect and site(s) of action in a model of stress-induced sensitization of visceral nociception in rats. Adult male Wistar rats were equipped for recording of visceromotor response (VMR) to phasic colorectal distension (CRD; 10-60 mmHg).

View Article and Find Full Text PDF

The aim of this study was to investigate the contribution of the TRPV1 receptor to jejunal afferent sensitivity in the murine intestine. Multiunit activity was recorded in vitro from mesenteric afferents supplying segments of mouse jejunum taken from wild-type (WT) and TRPV1 knockout (TRPV1(-/-)) animals. In WT preparations, ramp distension of the gut (up to 60 mmHg) produced biphasic changes in afferent activity so the pressure-response curve had an initial rapid increase in afferent discharge followed by a second phase of slower increase in activity.

View Article and Find Full Text PDF