Publications by authors named "Wendy Shallenberger"

Clinical flow cytometry is a reliable methodology for whole blood cell phenotyping for different applications. The BD FACSLyric™ system comprises a flow cytometer available in different optical configurations, BD FACSuite™ Clinical software, and optional BD FACS™ Universal Loader. BD FACSuite Clinical software used with BD™ FC Beads and BD CS&T Beads enable universal setup for performance QC, instrument control, data acquisition/storage, online/offline data analysis, and instrument standardization.

View Article and Find Full Text PDF

Background: CD49d is emerging as a powerful adverse prognostic marker in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). However, flow cytometric testing for CD49d has not yet been widely adopted in the United States, in part due to the lack of establishment of its performance characteristics in the clinical setting, especially in comparison with the more common CLL/SLL prognostic markers CD38 and ZAP-70.

Methods: CD49d expression levels in 124 CLL/SLL cases were assessed among peripheral blood (PB), bone marrow (BM), and lymph node (LN) specimens and correlated with available CD38 and ZAP-70 expression and cytogenetic findings.

View Article and Find Full Text PDF

Objectives: Flow cytometry is an important tool for identification of neoplastic T-cells, but immunophenotypic abnormalities are often subtle and must be distinguished from nonneoplastic subsets. Use of internal control (IC) T-cells in the evaluation for T-cell neoplasms was explored, both as a quality measure and as a reference for evaluating abnormal antigen expression.

Methods: All peripheral blood specimens (3-month period), or those containing abnormal T-cells (29-month period), stained with CD45 V500, CD2 V450, CD3 PE-Cy7, CD7 PE, CD4 Per-CP-Cy5.

View Article and Find Full Text PDF