Publications by authors named "Wendy S Weichert"

Canine parvovirus (CPV) is an important pathogen that emerged by cross-species transmission to cause severe disease in dogs. To understand the host immune response to vaccination, sera from dogs immunized with parvovirus are obtained, the polyclonal antibodies are purified and used to solve the high resolution cryo EM structures of the polyclonal Fab-virus complexes. We use a custom software, Icosahedral Subparticle Extraction and Correlated Classification (ISECC) to perform subparticle analysis and reconstruct polyclonal Fab-virus complexes from two different dogs eight and twelve weeks post vaccination.

View Article and Find Full Text PDF

B-cell cloning methods enable the analysis of antibody responses against target antigens and can be used to reveal the host antibody repertoire, antigenic sites (epitopes), and details of protective immunity against pathogens. Here, we describe improved methods for isolation of canine peripheral blood B cells producing antibodies against canine parvovirus (CPV) capsids by fluorescence-activated cell sorting, followed by cell cloning. We cultured sorted B cells from an immunized dog in vitro and screened for CPV-specific antibody production.

View Article and Find Full Text PDF

Canine parvovirus (CPV) is a small nonenveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late 1970s due to a host range switch of a virus similar to the feline panleukopenia virus that infected another host. The virus that emerged in dogs had altered capsid receptor and antibody binding sites, with some changes affecting both functions.

View Article and Find Full Text PDF

Entry of influenza A viruses (IAVs) into host cells is initiated by binding to sialic acids (Sias), their primary host cell receptor, followed by endocytosis and membrane fusion to release the viral genome into the cytoplasm of the host cell. Host tropism is affected by these entry processes, with a primary factor being receptor specificity. Sias exist in several different chemical forms, including the hydroxylated N-glycolylneuraminic acid (Neu5Gc), which is found in many hosts; however, it has not been clear how modified Sias affect viral binding and entry.

View Article and Find Full Text PDF

Unlabelled: Canine parvovirus (CPV) is a small non-enveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late-1970s due to a host range switch of a virus similar to the feline panleukopenia virus (FPV) that infected another host. The virus that emerged in dogs had altered capsid receptor- and antibody-binding sites, with some changes affecting both functions.

View Article and Find Full Text PDF

Cancers utilize glycans to evade the immune system via the Sialic acid (Sia)-Siglec (Sialic-acid-binding immunoglobulin-like lectins) pathway. Specifically, atypical structural forms of sialic acid bind to inhibitory Siglec receptors on natural killer (NK) cells resulting in the suppression of immune cell mediated cytotoxicity. The mechanism of action that governs the Sia-Siglec pathway in cancers is not understood.

View Article and Find Full Text PDF

Viruses are often cultured in cell lines for research and vaccine development, and those often differ from the natural hosts or tissues. Cell lines can also differ in the presence of virus receptors, such as the sialic acid (Sia) receptors used by influenza A viruses (IAV), which can vary in linkage (α2,3- or α2,6-linkage) and form (N-glycolylneuraminic acid [Neu5Gc] or N-acetylneuraminic acid [Neu5Ac]). The selective pressures resulting from passaging viruses in cell types with host-specific variations in viral receptors are still only partially understood.

View Article and Find Full Text PDF

Sialic acids (Sia) are widely displayed on the surfaces of cells and tissues. Sia come in a variety of chemically modified forms, including those with acetyl modifications at the C-7, C-8, and C-9 positions. Here, we analyzed the distribution and amounts of these acetyl modifications in different human and canine cells.

View Article and Find Full Text PDF

Influenza A viruses have regularly jumped to new host species to cause epidemics or pandemics, an evolutionary process that involves variation in the viral traits necessary to overcome host barriers and facilitate transmission. Mice are not a natural host for influenza virus but are frequently used as models in studies of pathogenesis, often after multiple passages to achieve higher viral titers that result in clinical disease such as weight loss or death. Here, we examine the processes of influenza A virus infection and evolution in mice by comparing single nucleotide variations of a human H1N1 pandemic virus, a seasonal H3N2 virus, and an H3N2 canine influenza virus during experimental passage.

View Article and Find Full Text PDF

Interactions between viruses and the host antibody immune response are critical in the development and control of disease, and antibodies are also known to interfere with the efficacy of viral vector-based gene delivery. The adeno-associated viruses (AAVs) being developed as vectors for corrective human gene delivery have shown promise in clinical trials, but preexisting antibodies are detrimental to successful outcomes. However, the antigenic epitopes on AAV capsids remain poorly characterized.

View Article and Find Full Text PDF

Neutralizing antibodies play a central role in the prevention and clearance of viral infections, but can be detrimental to the use of viral capsids for gene delivery. Antibodies present a major hurdle for ongoing clinical trials using adeno-associated viruses (AAVs); however, relatively little is known about the antigenic epitopes of most AAV serotypes or the mechanism(s) of antibody-mediated neutralization. We developed panels of AAV mAbs by repeatedly immunizing mice with AAV serotype 1 (AAV1) capsids, or by sequentially immunizing with AAV1 followed by AAV5 capsids, in order to examine the efficiency and mechanisms of antibody-mediated neutralization.

View Article and Find Full Text PDF

Canine parvovirus (CPV) and feline panleukopenia virus (FPV) are closely related parvoviruses that differ in their host ranges for cats and dogs. Both viruses bind their host transferrin receptor (TfR), enter cells by clathrin-mediated endocytosis, and traffic with that receptor through endosomal pathways. Infection by these viruses appears to be inefficient and slow, with low numbers of virions infecting the cell after a number of hours.

View Article and Find Full Text PDF

Canine parvovirus (CPV) is a host range variant of a feline virus that acquired the ability to infect dogs through changes in its capsid protein. Canine and feline viruses both use the feline transferrin receptor (TfR) to infect feline cells, and here we show that CPV infects canine cells through its ability to specifically bind the canine TfR. Receptor binding on host cells at 37 degrees C only partially correlated with the host ranges of the viruses, and an intermediate virus strain (CPV type 2) bound to higher levels on cells than did either the feline panleukopenia virus or a later strain of CPV.

View Article and Find Full Text PDF

The unique N-terminal region of the parvovirus VP1 capsid protein is required for infectivity by the capsids but is not required for capsid assembly. The VP1 N terminus contains a number of groups of basic amino acids which resemble classical nuclear localization sequences, including a conserved sequence near the N terminus comprised of four basic amino acids, which in a peptide can act to transport other proteins into the cell nucleus. Testing with a monoclonal antibody recognizing residues 2 to 13 of VP1 (anti-VP1-2-13) and with a rabbit polyclonal serum against the entire VP1 unique region showed that the VP1 unique region was not exposed on purified capsids but that it became exposed after treatment of the capsids with heat (55 to 75 degrees C), or urea (3 to 5 M).

View Article and Find Full Text PDF