We recently discovered that by changing environmental signals, differentiated immortalized human meibomian gland epithelial cells (IHMGECs) de-differentiate into proliferating cells. We also discovered that following exposure to appropriate stimuli, these proliferative cells re-differentiate into differentiated IHMGECs. We hypothesize that this plasticity of differentiated and proliferative IHMGECs is paralleled by very significant alterations in cellular gene expression.
View Article and Find Full Text PDFPurpose: Infestation with demodex mites has been linked to the development of chalazion, meibomian gland dysfunction, and blepharitis. An effective treatment is the eyelid application of terpinen-4-ol (T4O), a tea tree oil component. However, T4O is also known to be toxic to nonocular epithelial cells.
View Article and Find Full Text PDFPurpose: In humans, loss-of-function mutations in the gene encoding Chordin-like 1 (CHRDL1) cause X-linked megalocornea (MGC1), characterized by bilateral corneal enlargement, decreased corneal thickness, and increased anterior chamber depth (ACD). We sought to determine whether Chrdl1 knockout (KO) mice would recapitulate the ocular findings found in patients with MGC1.
Methods: We generated mice with a Chrdl1 KO allele and confirmed that male Chrdl1 hemizygous KO mice do not express Chrdl1 mRNA.
Purpose: Clinical studies have indicated that the long-term use of topical antiglaucoma drugs, such as carbonic anhydrase inhibitors (CAIs), may lead to meibomian gland dysfunction (MGD). We hypothesize that these adverse effects involve a direct influence on human MG epithelial cells (HMGECs). The purpose our present investigation was to test our hypothesis and determine whether exposure to dorzolamide, a CAI, impacts the proliferation, intracellular signaling and differentiation of HMGECs.
View Article and Find Full Text PDFRecently, we discovered that the cosmetic preservatives, benzalkonium chloride and formaldehyde, are especially toxic to human meibomian gland epithelial cells (HMGECs). Exposure to these agents, at concentrations approved for human use, leads within hours to cellular atrophy and death. We hypothesize that these effects are not unique, and that other cosmetic preservatives also exert adverse effects on HMGECs.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2020
Purpose: We recently discovered that a hypoxic environment is beneficial for meibomian gland (MG) function. The mechanisms underlying this effect are unknown, but we hypothesize that it is due to an increase in the levels of hypoxia-inducible factor 1α (HIF1α). In other tissues, HIF1α is the primary regulator of cellular responses to hypoxia, and HIF1α expression can be induced by multiple stimuli, including hypoxia and hypoxia-mimetic agents.
View Article and Find Full Text PDFPurpose: We discovered that dihydrotestosterone (DHT) decreases the ability of lipopolysaccharide, a bacterial toxin, to stimulate the secretion of leukotriene B4, a potent proinflammatory mediator, by immortalized human meibomian gland epithelial cells (IHMGECs). We hypothesize that this hormone action reflects an androgen suppression of proinflammatory gene activity in these cells. Our goal was to test this hypothesis.
View Article and Find Full Text PDFBackground: A compelling feature of dry eye disease is that it occurs predominantly in women. We hypothesize that this female prevalence is linked to sex-related differences in the meibomian gland (MG). This gland plays a critical role in maintaining the tear film, and its dysfunction is a major cause of dry eye disease.
View Article and Find Full Text PDFPurpose: Sjögren syndrome is an autoimmune disorder that occurs almost exclusively in women and is associated with extensive inflammation in lacrimal tissue, an immune-mediated destruction and/or dysfunction of glandular epithelial cells, and a significant decrease in aqueous tear secretion. We discovered that androgens suppress the inflammation in, and enhance the function of, lacrimal glands in female mouse models (e.g.
View Article and Find Full Text PDFPurpose: Optimal meibomian gland (MG) function is critically important for the health and wellbeing of the ocular surface. We hypothesize that low oxygen (O) conditions promote the function of human MG epithelial cells (HMGECs) and that human MGs exist in a relatively hypoxic environment. The purpose of this study was to test our hypotheses.
View Article and Find Full Text PDFPurpose: Sjögren syndrome is an autoimmune disease that occurs primarily in women, and is associated with lacrimal gland inflammation and aqueous-deficient dry eye. We hypothesize that sex-associated differences in lacrimal gland gene expression are very important in promoting lymphocyte accumulation in this tissue and contribute to the onset, progression, and/or severity of the inflammatory disease process. To test our hypothesis, we explored the nature and extent of sex-related differences in gene expression in autoimmune lacrimal glands.
View Article and Find Full Text PDFStem Cells Transl Med
December 2018
The meibomian gland (MG) is a sebaceous gland that secretes through a holocrine process. Because such secretion requires the destruction of MG acinar epithelial cells, they need constant renewal and differentiation. The processes that promote these regenerative events in the human MG are unknown, nor is it known how to distinguish MG progenitor and differentiated cells.
View Article and Find Full Text PDFPurpose: The purpose of this study is to establish the short tandem repeat (STR) profiles of several human cell lines commonly used in ocular surface research.
Materials And Methods: Independently DNA was extracted from multiple passages of three human corneal epithelial cell lines, two human conjunctival epithelial cell lines and one meibomian gland cell line, from different laboratories actively involved in ocular surface research. The samples were then subjected to STR analysis on a fee-for-service basis in an academic setting and the data compared against that in available databases.
Purpose: Lipopolysaccharide (LPS), a bacterial endotoxin, is known to stimulate leuokotriene B4 (LTB4) secretion by human corneal (HCECs), conjunctival (HConjECs) and meibomian gland (HMGECs) epithelial cells. We hypothesize that this LTB4 effect represents an overall induction of proinflammatory gene expression in these cells. Our objective was to test this hypothesis.
View Article and Find Full Text PDFPurpose: We hypothesized that women with primary (pSS) and secondary Sjögren syndrome (sSS; with systemic lupus erythematosus [SLE] or rheumatoid arthritis [RA]) have meibomian gland dysfunction (MGD). We sought to test our hypothesis.
Methods: Subjects with pSS, sSS + SLE, sSS + RA, and non-SS-related MGD were recruited from the Sjögren's Syndrome Foundation or outpatient clinics at Tufts University School of Dental Medicine or Brigham and Women's Hospital.
Cosmetic products, such as mascara, eye shadow, eyeliner and eye makeup remover are used extensively to highlight the eyes or clean the eyelids, and typically contain preservatives to prevent microbial growth. These preservatives include benzalkonium chloride (BAK) and formaldehyde (FA)-releasing preservatives. We hypothesize that these preservatives, at concentrations (BAK = 1 mg/ml; FA = 0.
View Article and Find Full Text PDFWe hypothesize that aromatase, an enzyme that regulates estrogen production, plays a significant role in the control of intraocular pressure (IOP) and retinal ganglion cells (RGCs). To begin to test our hypothesis, we examined the impact of aromatase absence, which completely eliminates estrogen synthesis, in male and female mice. Studies were performed with adult, age-matched wild type (WT) and aromatase knockout (ArKO) mice.
View Article and Find Full Text PDFWe recently discovered that the anti-glaucoma pharmaceuticals timolol, a β adrenergic antagonist, and pilocarpine, a cholinergic compound, negatively influence the morphology, proliferative capacity and survival of human meibomian gland epithelial cells (HMGECs). We hypothesize that another class of anti-glaucoma drugs, the α2 adrenergic agonists, also acts directly on HMGECs to affect their structure and function. We tested this hypothesis.
View Article and Find Full Text PDFPurpose: We previously discovered that azithromycin (AZM) acts directly on immortalized human meibomian gland epithelial cells (IHMGECs) to stimulate their lipid and lysosome accumulation and overall differentiation. We hypothesize that this phospholipidosis-like effect is due to AZM's cationic amphiphilic drug (CAD) nature. If our hypothesis is correct, then other CADs (e.
View Article and Find Full Text PDFPurpose: Investigators have discovered that topical antiglaucoma drugs may induce meibomian gland dysfunction. This response may contribute to the dry eye disease commonly found in patients with glaucoma taking such medications. We hypothesize that drug action involves a direct effect on human meibomian gland epithelial cells (HMGECs).
View Article and Find Full Text PDFPurpose: Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.
View Article and Find Full Text PDFPurpose: Oral supplementation with omega 3 (ω-3) and/or 6 (ω-6) fatty acids (FAs) has been reported to alleviate the signs and symptoms of dry eye disease and to improve the expressibility and quality of meibum, in patients with meibomian gland dysfunction. We tested our hypothesis that these FA effects may reflect a direct FA action on human meibomian gland epithelial cells.
Methods: Immortalized human meibomian gland epithelial cells (IHMGECs) were cultured with ω-3, ω-6, or both FAs together for up to 7 days in the presence or absence of serum.
Purpose. We hypothesize that growth hormone (GH) plays a significant role in the regulation of the meibomian gland. To test our hypothesis, we examined the influence of GH on mouse meibomian gland structure.
View Article and Find Full Text PDFPurpose: Azithromycin and tetracyclines are commonly prescribed in the United States for the treatment of meibomian gland dysfunction (MGD). The efficacy of these antibiotics has been believed to be their antiinflammatory and antibacterial actions, which suppress MGD-associated posterior blepharitis and growth of lid bacteria. However, we recently discovered that azithromycin can act directly on human meibomian gland epithelial cells (HMGECs) to stimulate their function.
View Article and Find Full Text PDF