Aim: Pharmacokinetics have historically been assessed using drug concentration data obtained via blood draws and bench-top analysis. The cumbersome nature of these typically constrains studies to at most a dozen concentration measurements per dosing event. This, in turn, limits our statistical power in the detection of hours-scale, time-varying physiological processes.
View Article and Find Full Text PDFWomen's empowerment has been a subject of interest because of its relevance to development and demography, particularly in West Africa. Women's empowerment is typically conceptualized as an individual attribute of women, associated with socioeconomic and demographic characteristics. However, we hypothesize a geography of women's empowerment in the West African region, where empowerment processes are culturally situated and embedded in place.
View Article and Find Full Text PDFWhite matter structures composed of myelinated axons in the living human brain are primarily studied by diffusion-weighted MRI (dMRI). These long-range projections are typically characterized in a two-step process: dMRI signal is used to estimate the orientation of axon segments within each voxel, then these local orientations are linked together to estimate the spatial extent of putative white matter bundles. Tractography, the process of tracing bundles across voxels, either requires computationally expensive (probabilistic) simulations to model uncertainty in fiber orientation or ignores it completely (deterministic).
View Article and Find Full Text PDFMEAP, the moving ensemble analysis pipeline, is a new open-source tool designed to perform multisubject preprocessing and analysis of cardiovascular data, including electrocardiogram (ECG), impedance cardiogram (ICG), and continuous blood pressure (BP). In addition to traditional ensemble averaging, MEAP implements a moving ensemble averaging method that allows for the continuous estimation of indices related to cardiovascular state, including cardiac output, preejection period, heart rate variability, and total peripheral resistance, among others. Here, we define the moving ensemble technique mathematically, highlighting its differences from fixed-window ensemble averaging.
View Article and Find Full Text PDFWe present general methodology for sequential inference in nonlinear stochastic state-space models to simultaneously estimate dynamic states and fixed parameters. We show that basic particle filters may fail due to degeneracy in fixed parameter estimation and suggest the use of a kernel density approximation to the filtered distribution of the fixed parameters to allow the fixed parameters to regenerate. In addition, we show that "seemingly" uninformative uniform priors on fixed parameters can affect posterior inferences and suggest the use of priors bounded only by the support of the parameter.
View Article and Find Full Text PDF