Publications by authors named "Wendy M P J Sol"

Article Synopsis
  • Disturbed flow contributes to endothelial dysfunction in intimal hyperplasia, commonly found in vascular grafts, leading to adverse vascular conditions.
  • This study introduces a new bypass flow model that simulates disturbed flow and various hemodynamic patterns using pulsatile flow.
  • Using computational fluid dynamics (CFD), researchers validated the model by showing that human endothelial cells exposed to disturbed flow exhibited significant changes in morphology and activation compared to cells in regular or stagnant flow, highlighting the model's potential for studying vascular diseases.
View Article and Find Full Text PDF

Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed.

View Article and Find Full Text PDF

Accumulating evidence proves that endothelial dysfunction is involved in coronavirus disease 2019 (COVID-19) progression. We previously demonstrated that the endothelial surface glycocalyx has a critical role in maintenance of vascular integrity. Here, we hypothesised that serum factors of severe COVID-19 patients affect the glycocalyx and result in endothelial dysfunction.

View Article and Find Full Text PDF

Netrin-4, recognized in neural and vascular development, is highly expressed by mature endothelial cells. The function of this netrin-4 in vascular biology after development has remained unclear. We found that the expression of netrin-4 is highly regulated in endothelial cells and is important for quiescent healthy endothelium.

View Article and Find Full Text PDF
Article Synopsis
  • The loss of hyaluronan (HA) from the endothelial glycocalyx affects the stability of blood vessels and their ability to adapt to ischemia (lack of blood flow).
  • In experiments with mice lacking HA synthesis, there was less blood flow in the hindlimbs and poor restoration of capillary perfusion after arterial blockage.
  • These findings suggest that targeting endothelial HA could help improve blood flow and treatment outcomes in diabetic patients with ischemic conditions.
View Article and Find Full Text PDF

Differentiation of human-induced pluripotent stem cells (hiPSCs) into vascular endothelium is of great importance to tissue engineering, disease modeling, and use in regenerative medicine. Although differentiation of hiPSCs into endothelial-like cells (hiPSC-derived endothelial cells [hiPSC-ECs]) has been demonstrated before, controversy exists as to what extent these cells faithfully reflect mature endothelium. To address this issue, we investigate hiPSC-ECs maturation by their ability to express von Willebrand factor (VWF) and formation of Weibel-Palade bodies (WPBs).

View Article and Find Full Text PDF

In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis.

View Article and Find Full Text PDF

Objective: Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) are used to study organogenesis and model disease as well as being developed for regenerative medicine. Endothelial cells are among the many cell types differentiated from hiPSCs, but their maturation and stabilization fall short of that in adult endothelium. We examined whether shear stress alone or in combination with pericyte co-culture would induce flow alignment and maturation of hiPSC-derived endothelial cells (hiPSC-ECs) but found no effects comparable with those in primary microvascular ECs.

View Article and Find Full Text PDF

Background: A glycocalyx envelope consisting of proteoglycans and adhering proteins covers endothelial cells, both the luminal and abluminal surface. We previously demonstrated that short-term loss of integrity of the luminal glycocalyx layer resulted in perturbed glomerular filtration barrier function.

Methods: To explore the role of the glycocalyx layer of the endothelial extracellular matrix in renal function, we generated mice with an endothelium-specific and inducible deletion of hyaluronan synthase 2 (Has2), the enzyme that produces hyaluronan, the main structural component of the endothelial glycocalyx layer.

View Article and Find Full Text PDF

The bioengineering of a replacement kidney has been proposed as an approach to address the growing shortage of donor kidneys for the treatment of chronic kidney disease. One approach being investigated is the recellularization of kidney scaffolds. In this study, we present several key advances toward successful re-endothelialization of whole kidney matrix scaffolds from both rodents and humans.

View Article and Find Full Text PDF

Inhibition of monocyte chemotactic protein-1 (MCP-1) with the Spiegelmer emapticap pegol (NOX-E36) shows long-lasting albuminuria-reducing effects in diabetic nephropathy. MCP-1 regulates inflammatory cell recruitment and differentiation of macrophages. Because the endothelial glycocalyx is also reduced in diabetic nephropathy, we hypothesized that MCP-1 inhibition restores glomerular barrier function through influencing macrophage cathepsin L secretion, thus reducing activation of the glycocalyx-degrading enzyme heparanase.

View Article and Find Full Text PDF