Aims: We aimed to identify mechanisms underlying the tolerance of Proteus mirabilis-a common cause of catheter associated urinary tract infection-to the clinically used biocides chlorhexidine (CHD) and octenidine (OCT).
Methods And Results: We adapted three clinical isolates to grow at concentrations of 512 µg ml-1 CHD and 128 µg ml-1 OCT. Genetic characterization and complementation studies revealed mutations inactivating the smvR repressor and increasing smvA efflux expression were associated with adaptation to both biocides.
Vandetanib-eluting radiopaque beads (VERB) have been developed for use in transarterial chemoembolization of liver tumours, with the goal of combining embolization with local delivery of antiangiogenic therapy. The objective of this study was to investigate how embolization-induced hypoxia may affect antitumoural activity of vandetanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR), in the context of hepatocellular carcinoma (HCC) treatment. We studied the effect of vandetanib on proliferation, cell cycle and apoptosis of HCC cells, in hypoxic conditions, as well as the direct effects of the beads on 3D HCC spheroids.
View Article and Find Full Text PDFDrug-eluting Embolic Bead - Transarterial Chemoembolisation (DEB-TACE) is a minimally invasive embolising treatment for liver tumours that allows local release of chemotherapeutic drugs via ion exchange, following delivery into hepatic arterial vasculature. Thus far, no single in vitro model has been able to accurately predict the complete kinetics of drug release from DEB, due to heterogeneity of rate-controlling mechanisms throughout the process of DEB delivery. In this study, we describe two in vitro models capable of distinguishing between early phase and late phase drug release by mimicking in vivo features of each phase.
View Article and Find Full Text PDFIn vitro, pancreatic β-cells tend to reduce their ability to aggregate into islets and lose insulin-producing ability, likely due to insufficient cell-cell and cell-matrix interactions that are essential for β-cell retention, viability and functionality. In response to these needs, surfaces of succinylated chitosan-based beads (NSC) were modified with zwitterionic carboxy-betaine (CB) moieties, a compatible osmolyte known to regulate cellular hydration state, and used to promote the formation of β-cell spheroids using a conventional 2D cell culture technique. The NSC were synthesised by ionic gelation and surface-functionalised with CB using carbodiimide chemistry.
View Article and Find Full Text PDFObjective: Hypoxia is known to induce pancreatic beta cell dysfunction and apoptosis. Changes in Programmed Cell Death Gene 4 (PDCD4) expression have previously been linked with beta cell neogenesis and function. Our aim was to investigate the effects of hypoxia on cell viability, PDCD4 expression and subcellular localisation.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the third most frequent cause of cancer deaths worldwide. The standard of care for intermediate HCC is transarterial chemoembolization, which combines tumour embolization with locoregional delivery of the chemotherapeutic doxorubicin. Embolization therapies induce hypoxia, leading to the escape and proliferation of hypoxia-adapted cancer cells.
View Article and Find Full Text PDFSince their introduction around a decade ago, embolic drug-eluting beads (DEBs) have become a well-established treatment option for the locoregional transarterial treatment of hepatic malignancies. Despite this success, the therapy is seen to be limited by the choice of drug and more effective options are therefore being sought. These include the small molecule multi-tyrosine kinase inhibitors (MTKi), which exert an anti-angiogenic and anti-proliferative effect that could be highly beneficial in combating some of the unwanted downstream consequences of embolization.
View Article and Find Full Text PDFAccumulating evidence shows indigenous gut microbes can interact with the human host through modulation of serotonin (5-HT) signaling. Here we investigate the impact of the probiotic Escherichia coli Nissle 1917 (EcN) on 5-HT signalling in gut tissues. Ex-vivo mouse ileal tissue sections were treated with either EcN or the human gut commensal MG1655, and effects on levels of 5-HT, precursors, and metabolites, were evaluated using amperometry and high performance liquid chromatography with electrochemical detection (HPLC-EC).
View Article and Find Full Text PDFEscherichia coli Nissle 1917 (EcN) is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells.
View Article and Find Full Text PDFObjectives: We wished to identify a major transcript that is upregulated during in vivo pancreatic islet neogenesis and examine the expression of the gene in beta and ductal cells.
Methods: Differential display polymerase chain reaction was used to identify upregulated transcripts after islet neogenesis was stimulated in the rat by brief occlusion of the main pancreatic duct. The expression of this major transcript, namely PDCD4 (programmed cell death gene 4), was measured in beta and ductal cells after stimulation with the incretin hormone glucagon-like peptide 1, mitogenic insulin, the thiazolidinedione rosiglitazone, and by high glucose concentrations.
The present study investigated the role of selenium in the regulation of pancreatic beta-cell function. Utilising the mouse beta-cell line Min6, we have shown that selenium specifically upregulates Ipf1 (insulin promoter factor 1) gene expression, activating the -2715 to -1960 section of the Ipf1 gene promoter. Selenium increased both Ipf1 and insulin mRNA levels in Min6 cells and stimulated increases in insulin content and insulin secretion in isolated primary rat islets of Langerhans.
View Article and Find Full Text PDFObjectives: Both glucocorticoid (GC) administration and brief occlusion of the main pancreatic duct result in an increase in total islet mass. Consequently, it was questioned whether these 2 stimuli would produce similar islet growth, indicating commonality in the mechanism of expansion. To test this, we assessed the effects on morphology after single and dual stimulation of the pancreas.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2004
Islet amyloid polypeptide (IAPP or amylin) is co-secreted with insulin from the pancreatic beta-cells. Transcription of the IAPP gene is controlled by a complex promoter region, spanning from -2798 to +450 relative to the transcriptional start site. In the present study, we have used reporter gene analysis and semi-quantitative RT-PCR to establish that insulin, glucagon, glucagon-like peptide-1 (GLP-1) and the GLP-1 derivatives GLP(7-36)Amide and Exendin-4 all stimulate IAPP promoter activity, as well as endogenous IAPP mRNA levels in isolated islets of Langerhans.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2002
In the adult pancreas the expression of the transcription factor PDX1 is mainly restricted to the beta-cells of the islets of Langerhans. In this study we have identified a region of the pdx1 promoter between -2715 and -1960 which was essential to direct pancreatic islet-cell-specific expression of PDX1. We have also begun for the first time to understand the complex nutritional and hormonal regulation controlling PDX1 expression.
View Article and Find Full Text PDF