Publications by authors named "Wendy Kleibeuker"

Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator.

View Article and Find Full Text PDF

Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms have only begun to be unraveled. GRK2 regulates cellular signaling by promoting G-protein-coupled receptor (GPCR) desensitization and direct interaction with downstream kinases including p38. The aim of this study was to determine the contribution of GRK2 to regulation of inflammatory pain and to unravel the underlying mechanism.

View Article and Find Full Text PDF

Doxycycline (DOX) is widely used as a pharmacological agent and as an effector molecule in inducible gene expression systems. For most applications, it is important to determine whether the DOX concentration reaches the level required for optimal efficacy. We developed a sensitive bioassay for measuring the DOX concentration in biological samples.

View Article and Find Full Text PDF

G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates G protein-coupled receptor signaling via agonist-induced receptor phosphorylation and desensitization. GRK2 can also modulate cellular activation by interacting with downstream signaling molecules. The intracellular GRK2 level changes during inflammatory conditions.

View Article and Find Full Text PDF

Many neurotransmitters involved in pain perception transmit signals via G protein-coupled receptors (GPCRs). GPCR kinase 2 (GRK2) regulates agonist-induced desensitization and signaling of multiple GPCRs and interacts with downstream molecules with consequences for signaling. In general, low GRK2 levels are associated with increased responses to agonist stimulation of GPCRs.

View Article and Find Full Text PDF

Inflammation and nerve injury can both induce mechanical allodynia via mechanisms involving the production of pro-inflammatory cytokines and increased neuronal activity. Many neurotransmitters involved in pain signal via G protein-coupled receptors (GPCRs). GPCR kinase (GRK)2 is a member of the GRK family that regulates agonist-induced desensitization and signalling of GPCRs.

View Article and Find Full Text PDF

Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is excreted by the majority of S. aureus strains and is a potent inhibitor of C5a- and formylated peptide-mediated chemotaxis of neutrophils and monocytes. Recently, we reported that CHIPS binds to the C5a receptor (C5aR) and the formylated peptide receptor, thereby blocking activation by C5a and formylated peptides, respectively.

View Article and Find Full Text PDF

Staphylococcus aureus excretes a factor that specifically and simultaneously acts on the C5aR and the formylated peptide receptor (FPR). This chemotaxis inhibitory protein of S. aureus (CHIPS) blocks C5a- and fMLP-induced phagocyte activation and chemotaxis.

View Article and Find Full Text PDF