Publications by authors named "Wendy Kain"

The Cry proteins from Bacillus thuringiensis (Bt) are major insecticidal toxins in formulated Bt sprays and are expressed in genetically engineered Bt crops for insect pest control. However, the widespread application of Bt toxins in the field imposes strong selection pressure on target insects, leading to the evolution of insect resistance to the Bt toxins. Identification and understanding of mechanisms of insect resistance to Bt toxins are an important approach for dissecting the modes of action of Bt toxins and providing knowledge necessary for the development of resistance management technologies.

View Article and Find Full Text PDF

The three-domain Cry toxin Cry1Ac from Bacillus thuringiensis (Bt) is an important insecticidal toxin in Bt sprays and has been used in transgenic Bt-crops to confer insect resistance. The cabbage looper, Trichoplusia ni, has developed resistance to Bt sprays in commercial greenhouses, and the resistance to Cry1Ac has been previously identified to be associated with altered expression of the APN1 and APN6 genes and be genetically linked to a locus on chromosome 15. In this study, the Cry1Ac resistance locus in T.

View Article and Find Full Text PDF

Insecticidal proteins from Bacillus thuringiensis (Bt) are the primary recombinant proteins expressed in transgenic crops (Bt-crops) to confer insect resistance. Development of resistance to Bt toxins in insect populations threatens the sustainable application of Bt-crops in agriculture. The Bt toxin Cry2Ab is a major insecticidal protein used in current Bt-crops, and resistance to Cry2Ab has been selected in several insects, including the cabbage looper, Trichoplusia ni.

View Article and Find Full Text PDF

The insect midgut peritrophic membrane (or peritrophic matrix) (PM) is an extracellular structure, lining the midgut epithelium. The PM facilitates the food digestion process and plays important roles in insect-microbe interactions as a barrier against microbial pathogens. The soil bacterium, Bacillus thuringiensis (Bt), and its proteinaceous toxins are widely used for insect control.

View Article and Find Full Text PDF

Adoption of biotech crops engineered to express insecticidal toxins from Bacillus thuringiensis (Bt) has revolutionized insect pest control in agriculture. For continuing effective application and development of the environmentally friendly Bt biotechnology, it is fundamental to understand pathways of toxicity of Bt toxins in insects. In this study, mutations were introduced in the midgut cadherin gene in the cabbage looper, Trichoplusia ni, by CRISPR/Cas9 mutagenesis.

View Article and Find Full Text PDF

Bacillus thuringiensis Vip3 proteins are synthesized and secreted during the vegetative growth phase. They are activated by gut proteases, recognize and bind to midgut receptors, form pores and lyse cells. We tested the susceptibility to Vip3Aa and Vip3Ca of Cry1A-, Cry2A-, Dipel- and Vip3-resistant insect colonies from different species to determine whether resistance to other insecticidal proteins confers cross-resistance to Vip3 proteins.

View Article and Find Full Text PDF

The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac.

View Article and Find Full Text PDF

The resistance to the Bacillus thuringiensis (Bt) toxin Cry2Ab in a greenhouse-originated Trichoplusia ni strain resistant to both Bt toxins Cry1Ac and Cry2Ab was characterized. Biological assays determined that the Cry2Ab resistance in the T. ni strain was a monogenic recessive trait independent of Cry1Ac resistance, and there existed no significant cross-resistance between Cry1Ac and Cry2Ab in T.

View Article and Find Full Text PDF

Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca.

View Article and Find Full Text PDF

Thrips tabaci is a major pest of high-value vegetable crops and understanding its population genetics will advance our knowledge about its ecology and management. Mitochondrial cytochrome oxidase subunit I (COI) gene sequence was used as a molecular marker to analyze T. tabaci populations from onion and cabbage fields in New York.

View Article and Find Full Text PDF

The insect midgut cadherin serves as an important receptor for the Cry toxins from Bacillus thuringiensis (Bt). Variation of the cadherin in insect populations provides a genetic potential for development of cadherin-based Bt resistance in insect populations. Sequence analysis of the cadherin from the cabbage looper, Trichoplusia ni, together with cadherins from 18 other lepidopterans showed a similar phylogenetic relationship of the cadherins to the phylogeny of Lepidoptera.

View Article and Find Full Text PDF

Alteration of binding sites for Bacillus thuringiensis (Bt) toxins in insect midgut is the major mechanism of high-level resistance to Bt toxins in insects. The midgut cadherin is known to be a major binding protein for Bt Cry1A toxins and linkage of Bt-resistance to cadherin gene mutations has been identified in lepidopterans. The resistance to Bt toxin Cry1Ac evolved in greenhouse populations of Trichoplusia ni has been identified to be associated with the down-regulation of an aminopeptidase N (APN1) gene by a trans-regulatory mechanism and the resistance gene has been mapped to the locus of an ABC transporter (ABCC2) gene.

View Article and Find Full Text PDF

Despite the prominent and worldwide use of Bacillus thuringiensis (Bt) insecticidal toxins in agriculture, knowledge of the mechanism by which they kill pests remains incomplete. Here we report genetic mapping of a membrane transporter (ABCC2) to a locus controlling Bt Cry1Ac toxin resistance in two lepidopterans, implying that this protein plays a critical role in Bt function.

View Article and Find Full Text PDF

Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), a common insect pest in Europe and a new invasive pest in North America, causes severe damage to cruciferous crops. In the United States, C. nasturtii was first reported in western New York in 2004.

View Article and Find Full Text PDF

The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T.

View Article and Find Full Text PDF

A population of cabbage looper, Trichoplusia ni (Hübner), collected from commercial greenhouses in the lower mainland of British Columbia, Canada, in 2001 showed a resistance level of 24-fold to Dipel, a product of Bacillus thuringiensis (Bt) subspecies kurstaki. This population was selected with Cry1Ac, the major Bt Cry toxin in Dipel, to obtain a homogenous population resistant to Cry1Ac. The resulting strain of T.

View Article and Find Full Text PDF

The genetic inheritance of resistance to a commercial formulation of Bacillus thuringiensis subsp. kurstaki was examined in a Trichoplusia ni colony initiated from a resistant population present in a commercial vegetable greenhouse in British Columbia, Canada. Progeny of F(1) reciprocal crosses and backcrosses between F(1) larvae and resistant (P(R)) and susceptible (P(S)) populations were assayed at different B.

View Article and Find Full Text PDF

Carboxypeptidase A and carboxypeptidase B activities from the midgut of Trichoplusia ni larvae were characterized. In the T. ni larval midgut, the primary digestive carboxypeptidase activity was attributed to carboxypeptidase A, which was eight times more active than carboxypeptidase B.

View Article and Find Full Text PDF