The soil contributes to the main pool of essential mineral nutrients for plants. These mineral nutrients are critical elements for the building blocks of plant biomolecules, play fundamental roles in cell processes, and act in various enzymatic reactions. The roots are the main entry point for mineral nutrients used within the plant to grow, develop, and produce seeds.
View Article and Find Full Text PDFPlant Biotechnol J
April 2021
Human population growth has increased the demand for food crops, animal feed, biofuel and biomaterials, all the while climate change is impacting environmental growth conditions. There is an urgent need to develop crop varieties which tolerate adverse growth conditions while requiring fewer inputs. Plant breeding is critical to global food security and, while it has benefited from modern technologies, it remains constrained by a lack of valuable genetic diversity, linkage drag, and an effective way to combine multiple favourable alleles for complex traits.
View Article and Find Full Text PDFBackground: The oilseed Camelina sativa is grown for a range of applications, including for biofuel, biolubricants, and as a source of omega-3 fatty acids for the aquaculture feed industry. The seed meal co-product is used as a source of protein for animal feed; however, the low value of the meal hinders profitability and more widespread application of camelina. The nutritional quality of the seed meal is largely determined by the abundance of specific seed storage proteins and their amino acid composition.
View Article and Find Full Text PDFThe Really Interesting New Gene (RING)-type E3 ligase, Keep on Going (KEG) plays a critical role in Arabidopsis growth after germination and the connections between KEG and hormone signaling pathways are expanding. With regards to abscisic acid (ABA) signaling, KEG targets ABA-responsive transcription factors abscisic acid insensitive 5, ABF1 and ABF3 for ubiquitination and subsequent degradation through the 26S proteasome. Regulation of E3 ligases through self-ubiquitination is common to RING-type E3 ligases and ABA promotes KEG self-ubiquitination and degradation.
View Article and Find Full Text PDFThe RING-type E3 ligase, Keep on Going (KEG), is required for early seedling establishment in Arabidopsis thaliana. Post-germination, KEG negatively regulates abscisic acid (ABA) signalling by targeting Abscisic Acid Insensitive 5 (ABI5) for ubiquitination and subsequent degradation. Previous reports suggest that the role of KEG during early seedling development is not limited to regulation of ABI5 abundance.
View Article and Find Full Text PDFThe function of hormones during plant growth, development and response to environmental stresses relies heavily upon the actions of the ubiquitin proteasome system (UPS), which selectively degrades numerous proteins. Synthesis of ethylene, a growth and stress hormone, is regulated in part by the ubiquitin-dependent degradation of the rate-limiting enzymatic protein aminocyclopropane-1-carboxylic acid synthase (ACS). Regulation of ACS protein stability, and therefore ethylene production, is mediated by non-catalytic sequences within the C-terminal extension of many ACS proteins.
View Article and Find Full Text PDFE3 ubiquitin ligases select specific proteins for ubiquitin conjugation, and the modified proteins are commonly degraded through the 26S proteasome. XBAT32 is a RING-type E3 ligase involved in maintaining appropriate levels of ethylene. Previous work has suggested that XBAT32 modulates ethylene production by ubiquitinating two ethylene biosynthesis enzymes, ACS4 (type-II isoform) and ACS7 (type-III isoform).
View Article and Find Full Text PDFPlant growth and development is largely influenced by ubiquitin-mediated regulation of protein stability. Specificity of the ubiquitination pathway is controlled mainly by the substrate-recruiting E3 ubiquitin ligases, and consequently, E3 ligases control numerous cellular processes. Recent evidence that ubiquitination plays a critical role in regulating plant responses to abiotic stresses has launched intensive efforts to identify E3 ligases that mediate plant tolerance of adverse environmental conditions.
View Article and Find Full Text PDFObjectives: To investigate whether growing human nasal epithelium as primary cultures alters aminopeptidase B (APB), aminopeptidase N (APN) and dipeptidyldipeptidase (DPPIV) metabolic characteristics, and mRNA gene transcript expression.
Methods: The formation of 7-amino-methyl coumarin from specific substrates for APN (L-alanine-4-methyl-coumaryl-7-amide, APB (L-arginine-4-methyl-coumaryl-7-amide) and DPPIV (glycyl-L-proline-4-methyl-coumaryl-7-amide) was used to estimate the KM, Vmax and the effect of aminopeptidases inhibitors on the enzymes. Polymerase chain reaction was used to investigate gene expression.