How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus.
View Article and Find Full Text PDFObjective: Stereotactic radiosurgery (SRS) has been used to treat trigeminal neuralgia by targeting the cisternal segment of the trigeminal nerve, which in turn triggers changes in the gasserian ganglion. In the lumbar spine, the dorsal root ganglion (DRG) is responsible for transmitting pain sensitivity and is involved in the pathogenesis of peripheral neuropathic pain. Therefore, radiosurgery to the DRG might improve chronic peripheral pain.
View Article and Find Full Text PDFBackground: Stereotactic radiosurgery (SRS) is an effective technique to create lesions of the trigeminal nerve to treat refractory trigeminal neuralgia. In the lumbar spine, the dorsal root ganglion (DRG) contains the body of the sensory neurons responsible for pain sensitivity. Neuromodulation of the DRG might therefore improve chronic peripheral pain.
View Article and Find Full Text PDFMicrosurgical procedures, such as petroclival meningioma resection, require careful surgical actions in order to remove tumor tissue, while avoiding brain and vessel damaging. Such procedures are currently performed under microscope magnification. Robotic tools are emerging in order to filter surgeons' unintended movements and prevent tools from entering forbidden regions such as vascular structures.
View Article and Find Full Text PDFBackground: Coronal suture synostosis is a condition which can have deleterious physical and cognitive sequelae in humans if not corrected. A well-established animal model has previously demonstrated disruptions in intracranial pressure and developmental abnormalities in rabbits with congenital craniosynostosis compared to wild type rabbits.
Objective: The current study aimed to measure the cerebral blood flow (CBF) in developing rabbits with craniosynostosis who underwent suturectomy compared to those with no intervention and compared to wild type rabbits.
Background: Current practice in neurosurgical needle insertion is limited by the straight trajectories inherent with rigid probes. One technique allowing curvilinear trajectories involves flexible bevel-tipped needles, which bend during insertion due to their asymmetry. In the brain, safety will require avoidance of the sharp tips often used in laboratory studies, in favor of a more rounded profile.
View Article and Find Full Text PDFBackground: The brainstem is one of the most challenging areas for the neurosurgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging-based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI).
Objective: To construct a high-angular/spatial resolution, wide-population-based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem.
OBJECT Craniosynostosis is a condition in which one or more of the calvarial sutures fuses prematurely. In addition to the cosmetic ramifications attributable to premature suture fusion, aberrations in neurophysiological parameters are seen, which may result in more significant damage. This work examines the microstructural integrity of white matter, using diffusion tensor imaging (DTI) in a homogeneous strain of rabbits with simple, familial coronal suture synostosis before and after surgical correction.
View Article and Find Full Text PDFPurpose: Pediatric traumatic brain injury (TBI) represents a prominent yet understudied medical condition that can profoundly impact brain development. As the juvenile injured brain matures in the wake of neuropathological cascades during potentially critical periods, circuit alterations may explain neurological consequences, including cognitive deficits. We hypothesize that experimental brain injury in juvenile rats, with behavioral deficits that resolve, will lead to quantifiable structural changes in hippocampal neurons at chronic time points post-injury.
View Article and Find Full Text PDFBackground: As therapies for systemic cancer improve and patients survive longer, the risk for brain metastases increases. We evaluated whether immune mechanisms are involved in the development of brain metastasis.
Methods: We conducted our studies using BALB/c mice bearing syngeneic 4T1 mammary adenocarcinoma cells in the mammary gland.
Purpose: Controlled cortical impact (CCI) is commonly used in adult animals to study focal traumatic brain injury (TBI). Our study aims to further study injury mechanisms in children and variable models of pathology in the developing brain.
Methods: Develop a focal injury model of experimental TBI in the immature, postnatal days (PND) 7 and 17 rats that underwent a CCI at varying depths of deflection, 1.
Background: Dipyrone is an analgesic and antipyretic drug usually prescribed for patients with inflammatory conditions. We recently identified dipyrone as an antiapoptotic agent by screening a library of 1040 compounds for their ability to inhibit cytochrome c release from isolated mitochondria.
Objective: We investigated the potential neuroprotective properties of dipyrone in cerebral ischemia.
The technique of central nervous system cell implantation can affect the outcome of preclinical or clinical studies. Our goal was to evaluate the impact of various injection parameters that may be of consequence during the delivery of solute-suspended cells. These parameters included (1) the type and concentration of cells used for implantation, (2) the rate at which cells are injected (flow rate), (3) the acceleration of the delivery device, (4) the period of time between cell loading and injection into the CNS (delay), and (5) the length and gauge of the needle used to deliver the cells.
View Article and Find Full Text PDFEpidemiologic studies have highlighted associations between the regular use of nonsteroidal anti-inflammatory drugs (NSAID) and reduced glioma risks in humans. Most NSAIDs function as COX-2 inhibitors that prevent production of prostaglandin E₂ (PGE₂). Because PGE₂ induces expansion of myeloid-derived suppressor cells (MDSC), we hypothesized that COX-2 blockade would suppress gliomagenesis by inhibiting MDSC development and accumulation in the tumor microenvironment (TME).
View Article and Find Full Text PDFBackground: Cellular transplantation holds promise for the management of a variety of neurological disorders. However, there is great variability in cell type, preparation methods, and implantation technique, which are crucial to clinical outcomes.
Objective: We compared manual injection with automated injection using a prototype device to determine the possible value of a mechanized delivery system.
Resveratrol (3,5,4'-trihydroxystilbene) is a plant-derived small molecule that is protective against multiple neurological and systemic insults. To date, no studies have explored the potential for resveratrol to provide behavioral protection in adult animals in the setting of traumatic brain injury (TBI). Using 50 male Sprague-Dawley rats, we employed the controlled cortical impact (CCI) model to ascertain whether post-injury administration of resveratrol would reduce the severity of the well-described cognitive and motor deficits associated with the model.
View Article and Find Full Text PDFEvidence suggests that the gamma-aminobutyric acid (GABA)ergic system may be involved in cognitive dysfunction following traumatic brain injury (TBI). We investigated the effect of flumazenil treatment, a benzodiazepine antagonist approved by the U.S.
View Article and Find Full Text PDFObject: Cell transplantation has shown promise for the treatment of various neurological disorders, but the factors that influence cell survival and integration following transplantation are poorly understood. In fact, little is known regarding how simple but potentially critical variables, including the method of cellular preparation and administration, might affect transplant success. The goal of the present study was to determine the impact of time between tissue preparation and implantation on cellular viability.
View Article and Find Full Text PDFGlioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia.
View Article and Find Full Text PDFObjective: Craniosynostosis is the premature fusion of the calvarial sutures and is associated with aesthetic impairment and secondary damage to brain growth. Associated neurological injuries can result from increased intracranial pressure (ICP) and abnormal cerebral blood flow (CBF). Arterial spin-labeling (ASL) MRI was used to assess regional CBF in developing rabbits with early-onset coronal suture synostosis (EOCS) and age-matched wild-type controls (WT).
View Article and Find Full Text PDFThe herpes simplex virus-1 (HSV-1)-infected cell protein 0 (ICP0) is an E3 ubiquitin ligase implicated in cell cycle arrest and DNA repair inhibition. Convection-enhanced delivery (CED) of either the replication-defective, ICP0-producing HSV-1 mutant, d106, or the recombinant d109, devoid of all viral genome expression, was performed to determine the in vivo efficacy of ICP0 in combination with ionizing radiation (IR) or systemic temozolomide (TMZ) in the treatment of glioblastoma multiforme (GBM). Intracranial U87-MG xenografts were established in athymic nude mice.
View Article and Find Full Text PDFBackground: Toll-like receptor (TLR)3 ligands serve as natural inducers of pro-inflammatory cytokines capable of promoting Type-1 adaptive immunity, and TLR3 is abundantly expressed by cells within the central nervous system (CNS). To improve the efficacy of vaccine strategies directed against CNS tumors, we evaluated whether administration of a TLR3 ligand, polyinosinic-polycytidylic (poly-IC) stabilized with poly-lysine and carboxymethylcellulose (poly-ICLC) would enhance the anti-CNS tumor effectiveness of tumor peptide-based vaccinations.
Methods: C57BL/6 mice bearing syngeneic CNS GL261 glioma or M05 melanoma received subcutaneous (s.
Objective: Various causal mechanisms of familial nonsyndromic craniosynostosis have been presented. One hypothesis suggests that overproduction of bone at the suture is the primary origin of craniosynostosis, which affects brain and cranial growth secondarily through altered intracranial pressure (Primary Suture Fusion Model). Other hypotheses suggest that decreased cranial base growth or abnormal brain growth are the primary cause of craniosynostosis (Cranial Base, Brain Parenchyma Models, respectively).
View Article and Find Full Text PDFJ Immunol
August 2005
We tested whether modulation of the CNS-tumor microenvironment by delivery of IFN-alpha-transduced dendritic cells (DCs: DC-IFN-alpha) would enhance the therapeutic efficacy of peripheral vaccinations with cytokine-gene transduced tumor cells. Mice bearing intracranial GL261 glioma or MCA205 sarcoma received peripheral immunizations with corresponding irradiated tumor cells engineered to express IL-4 or GM-CSFs, respectively, as well as intratumoral delivery of DC-IFN-alpha. This regimen prolonged survival of the animals and induced tumor-specific CTLs that expressed TRAIL, which in concert with perforin and Fas ligand (FasL) was involved in the tumor-specific CTL activity of these cells.
View Article and Find Full Text PDFWe have created a novel cellular vehicle for gene therapy of malignant gliomas by transfection of murine bone marrow stroma cells (MSCs) with a cDNA encoding epidermal growth factor receptor (EGFR). These cells (EGFR-MSCs) demonstrate enhanced migratory responses toward glioma-conditioned media in comparison to primary MSCs in vitro. Enhanced migration of EGFR-MSC was at least partially dependent on EGF-EGFR, PI3-, MAP kinase kinase, and MAP kinases, protein kinase C, and actin polymerization.
View Article and Find Full Text PDF