Publications by authors named "Wendy C Sigurdson"

Objective: The aim of this study was to measure the flux of amyloid-β (Aβ) across the human cerebral capillary bed to determine whether transport into the blood is a significant mechanism of clearance for Aβ produced in the central nervous system (CNS).

Methods: Time-matched blood samples were simultaneously collected from a cerebral vein (including the sigmoid sinus, inferior petrosal sinus, and the internal jugular vein), femoral vein, and radial artery of patients undergoing inferior petrosal sinus sampling. For each plasma sample, Aβ concentration was assessed by 3 assays, and the venous to arterial Aβ concentration ratios were determined.

View Article and Find Full Text PDF

Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition.

View Article and Find Full Text PDF

Amyloid-β (Aβ) producing enzymes are key targets for disease-modifying Alzheimer's disease (AD) therapies since Aβ trafficking is at the core of AD pathogenesis. Development of such drugs might benefit from the identification of markers indicating in vivo drug effects in the central nervous system. We have previously shown that Aβ(1-15) is produced by concerted β-and α-secretase cleavage of amyloid-β protein precursor (AβPP).

View Article and Find Full Text PDF

Objective: Accumulation of amyloid-beta (Abeta) by overproduction or underclearance in the central nervous system (CNS) is hypothesized to be a necessary event in the pathogenesis of Alzheimer's disease. However, previously, there has not been a method to determine drug effects on Abeta production or clearance in the human CNS. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Abeta in the human CNS.

View Article and Find Full Text PDF