Food Addit Contam Part A Chem Anal Control Expo Risk Assess
August 2020
A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed and validated for the determination of residual peptide antibiotics (bacitracin A, colistin A and B, enramycin A and B, virginiamycin M1 and S1) in bovine milk. LC-HRMS accurate mass data provided the necessary selectivity and sensitivity to quantitate and identify these important antibiotics in milk at residue levels without extensive sample preparation. Milk samples were extracted using 0.
View Article and Find Full Text PDFAn analytical program for multiclass, multiresidue residue analysis to qualitatively and quantitatively determine veterinary drug compounds in game meats by LC-MS/MS has been developed and validated. The method was validated for the analysis of muscle from bison, deer, elk, and rabbit to test for 112 veterinary drug residues from the following drug classes: β-agonists, anthelmintics, anti-inflammatory drugs, corticosteroids, fluoroquinolones, β-lactams, macrolides, nitroimidazoles, phenicols, polypeptides, sulfonamides, tetracyclines, thyreostats, and tranquilizers. Muscle was extracted using a simple and quick procedure based on a solvent extraction with 80% ACN/water and sample cleanup with dispersive solid-phase extraction.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
November 2019
A rapid method for quantitative caffeine analysis in carbonated and non-carbonated beverages and liquid dietary supplement products was developed based on the direct sample introduction technique of laser diode thermal desorption atmospheric pressure chemical ionisation with tandem mass spectrometry (LDTD-MS/MS). Product samples were diluted with a mixture of methanol, water, and d-caffeine internal standard. Sample aliquots were filtered, spotted on a metal-lined LDTD microtitre plate, dried, and thermally desorbed for subsequent ionisation and analysis by MS/MS analysis.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
October 2019
A liquid chromatography high resolution mass spectrometry (LC-HRMS) screening method was developed previously to analyze for veterinary drug residues commonly found in different types of aquaculture products. This method has been further evaluated for its feasibility to detect several other classes of compounds that might also be a concern as possible contaminants in farmed tilapia, salmon, eel and shrimp. Some chemicals could contaminate water sources used in aquaculture production through agricultural run-off.
View Article and Find Full Text PDF: Triphenylmethane dyes and metabolites are known or suspected mutagens and are prohibited in animals intended for human consumption. Despite toxicity, triphenylmethane dyes are used illegally as inexpensive treatments for fungal and parasite infections in aquatic animals. AOAC INTERNTIONAL 2012.
View Article and Find Full Text PDFA screening method for veterinary drug residues in fish, shrimp, and eel using LC with a high-resolution MS instrument has been developed and validated. The method was optimized for over 70 test compounds representing a variety of veterinary drug classes. Tissues were extracted by vortex mixing with acetonitrile acidified with 2% acetic acid and 0.
View Article and Find Full Text PDFIn this study, we investigated two methods for the detection of antiviral compounds in chicken jerky pet treats. Initially, a screening method developed to detect many different chemical contaminants indicated the presence of amantadine, 1, in some pet treats analyzed. A second antiviral-specific method was then developed for amantadine and its analogues, rimantadine, 2, and memantine, 3.
View Article and Find Full Text PDFA collaborative study was conducted to evaluate the AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood. Fourteen laboratories from the United States, Canada, and the European Union member states participated in the study including national and state regulatory laboratories, university and national research laboratories, and private analytical testing laboratories.
View Article and Find Full Text PDFPrior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a single-laboratory validation of method 2012.25 was performed to expand the scope of the method to other seafood matrixes including salmon, catfish, tilapia, and shrimp.
View Article and Find Full Text PDFThe objective of this study was to perform a preliminary investigation of the nontargeted search and quantitative capabilities of a single-stage Exactive High-Resolution Mass Spectrometer (HRMS). To do this, the instrument and its associated software performed a non-targeted search for deleterious substances in a dog food sample suspected of causing gastrointestinal problems in dogs. A single-stage Orbitrap/high-performance liquid chromatography method and differential expression analysis software (Sieve) was used to detect and identify, and subsequently quantify, nontargeted compounds occurring only in the suspect dog food sample.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2016
A rapid method for the determination of free formaldehyde in cod is described. It uses a simple water extraction of formaldehyde which is then derivatised with 2,4-dinitrophenylhydrazine (DNPH) to form a sensitive and specific chromophore for high-performance liquid chromatography (HPLC) detection. Although this formaldehyde derivative has been widely used in past tissue analysis, this paper describes an improved derivatisation procedure.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2014
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening method is described for the detection and identification of 26 veterinary drugs in fish and other aquaculture products. The analytes include: 13 sulfonamides, trimethoprim, 3 fluoroquinolones, 3 quinolones, 3 triphenylmethane dyes, 2 leuco dye metabolites, and 1 hormone. In this method, tissue is mixed with EDTA-McIlvaine buffer, double-extracted with acetonitrile, p-toluenesulfonic (p-TSA) acid and N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD), and analyzed using LC-MS/MS.
View Article and Find Full Text PDFHigh resolution mass spectrometry (HRMS) is a valuable tool for the analysis of chemical contaminants in food. Our laboratory has successfully developed methods to screen for veterinary drug residues using liquid chromatography quadrupole time-of-flight (Q-TOF). There have been, however, significant challenges as methods are transferred from the development stage to routine regulatory analysis.
View Article and Find Full Text PDFThis analytical method was developed for the determination of three stilbene residues, diethylstilbestrol (DES), dienestrol (DEN), and hexestrol (HEX), in edible tissues of finfish including catfish, salmon, trout, and tilapia. Fortified fish samples were extracted with acetonitrile and further cleaned up using silica solid phase extraction columns. Stilbene residues were separated from matrix components by reversed phase high-performance liquid chromatography on a C8 column and analyzed using a tandem mass spectrometer with negative electrospray ionization.
View Article and Find Full Text PDFRationale: Veterinary drug residue analysis of meat and seafood products is an important part of national regulatory agency food safety programs to ensure that consumers are not exposed to potentially dangerous substances. Complex tissue matrices often require lengthy extraction and analysis procedures to identify improper animal drug treatment. Direct and rapid analysis mass spectrometry techniques have the potential to increase regulatory sample analysis speed by eliminating liquid chromatographic separation.
View Article and Find Full Text PDFIn this study, catfish muscle was analyzed for melamine (MEL) and cyanuric acid (CYA) residues following experimental feeding with low doses of MEL and MEL and CYA (MEL+CYA) and with the insoluble melamine-cyanurate complex (MEL=CYA). Catfish were daily fed 0.1 mg/kg BW of MEL for 15, 28, or 42 days, 0.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
December 2010
Due to concerns that cyanuric acid (CYA)-contaminated feed had been used in aquaculture and could enter the human food chain, a method to quantify CYA residues in the edible tissues of fish and shrimp was previously developed and validated. This paper provides further data on the deliberate feeding of CYA to shrimp to determine the extent of residue accumulation in edible tissue. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed for the analysis of CYA in shrimp tissue.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2009
A derivatization procedure using phenyl isocyanate was adapted to liquid chromatography ion trap mass spectrometry (LC-MS(n)) for confirmation and quantification of aminoglycoside residues in milk. Aminoglycoside residues were extracted from milk with acid and isolated from the matrix with a weak cation exchange solid-phase extraction cartridge. After isolating the compounds from the milk, derivatives of gentamicin, neomycin, and tobramycin were formed by reacting the drugs with phenyl isocyanate in the presence of triethylamine.
View Article and Find Full Text PDFLiquid chromatographic methods are presented for the quantitative and confirmatory determination of crystal violet (CV; also known as gentian violet), leucocrystal violet (LCV), brilliant green (BG), and leucobrilliant green (LBG) in catfish. LCV and LBG were oxidized to the chromic CV and BG by reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, and residues were measured as the combined CV+/-LCV and BG+/-LBG. These methods are extensions of published methods for malachite green (MG) analysis to allow simultaneous determination of MG, CV, and BG.
View Article and Find Full Text PDFIn May 2007, investigators discovered that waste material from the pet food manufacturing process contaminated with melamine (MEL) and/or cyanuric acid (CYA) had been added to hog and chicken feeds. At this time, investigators also learned that adulterated wheat gluten had been used in the manufacture of aquaculture feeds. Concern that the contaminated feed had been used in aquaculture and could enter the human food supply prompted the development of a method for the determination of CYA residues in the edible tissues of fish and shrimp.
View Article and Find Full Text PDFObjective: To determine whether renal crystals can be experimentally induced in animals fed melamine or the related triazine compound cyanuric acid, separately or in combination, and to compare experimentally induced crystals with those from a cat with triazine-related renal failure.
Animals: 75 fish (21 tilapia, 24 rainbow trout, 15 channel catfish, and 15 Atlantic salmon), 4 pigs, and 1 cat that was euthanatized because of renal failure.
Procedures: Fish and pigs were fed a target dosage of melamine (400 mg/kg), cyanuric acid (400 mg/kg), or melamine and cyanuric acid (400 mg of each compound/kg) daily for 3 days and were euthanatized 1, 3, 6, 10, or 14 days after administration ceased.
The most common drug prescribed to induce labor in the United States is oxytocin, a peptide hormone composed of nine amino acids. Oxytocin is often reconstituted in intravenous (IV) saline solutions at less than 0.05 units ml(-1) (125 ng ml(-1)) to be delivered at 1-4 drops per minute.
View Article and Find Full Text PDFPet and food animal (hogs, chicken, and fish) feeds were recently found to be contaminated with melamine (MEL). A quantitative and confirmatory method is presented to determine MEL residues in edible tissues from fish fed this contaminant. Edible tissues were extracted with acidic acetonitrile, defatted with dichloromethane, and cleaned up using mixed-mode cation exchange solid-phase extraction cartridges.
View Article and Find Full Text PDF