Publications by authors named "Wendy B Puryear"

While diverse strains of low-pathogenicity avian influenza have circulated in wild birds for a long period of time, there has previously been little pathology in wild birds, ducks have been the primary and largely asymptomatic wild reservoir, and spillover into mammals has been limited and rare. In recent years, a high-pathogenicity avian influenza (HPAI) virus has emerged on the global scene and shifted the previously established dogmas for influenza infection. High-pathogenicity avian influenza has expanded into wildlife in unprecedented numbers and species diversity, with unmatched disease severity for influenza in wildlife.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) has persisted as a One Health threat whose current circulation and impact are addressed in the companion Currents in One Health by Puryear and Runstadler, JAVMA, May 2024. Highly pathogenic avian influenza emerged as a by-product of agricultural practices and adapted to endemic circulation in wild bird species. Over more than 20 years, continued evolution in a complex ecology involving multiple hosts has produced a lineage that expanded globally over the last 2 years.

View Article and Find Full Text PDF

Background: In the midst of the COVID-19 pandemic, noninvasive respiratory support (NRS) therapies such as high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) were central to respiratory care. The extent to which these treatments increase the generation and dispersion of infectious respiratory aerosols is not fully understood. The objective of this study was to characterize SARS-CoV-2 aerosol dispersion from subjects with COVID-19 undergoing NRS therapy.

View Article and Find Full Text PDF

Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among wildlife in the arctic are less frequently published compared to southern temperate regions, where prevalence and subtype diversity are more routinely documented. Following PRISMA guidelines, this systematic review addresses this gap by describing the prevalence, spatiotemporal distribution, and ecological characteristics of IAVs detected among wildlife and the environment in this understudied region of the globe.

View Article and Find Full Text PDF
Article Synopsis
  • Differences in susceptibility to diseases among pinniped species can be attributed to rapid coevolution and ecological factors affecting natural selection.
  • An analysis of the MHC-I gene among harbor and gray seals revealed significant genetic diversity, with gray seals showing greater resistance to respiratory viruses compared to harbor seals.
  • These findings suggest that variations in immune response genetics, such as the number of supertypes and variants, may play a key role in the observed differences in disease resistance between the two species.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the diversity and transmission dynamics of influenza A viruses (IAV) across different bird species, particularly focusing on gulls and geese in addition to dabbling ducks.
  • It utilizes Bayesian phylodynamic modeling to show how these avian hosts contribute to the spread and evolution of various viral subtypes, especially highlighting the role of gulls in rapid transmission of the highly pathogenic avian influenza H5.
  • The research emphasizes the need for enhanced surveillance efforts in key geographic areas to monitor IAV spread and improve early detection strategies based on the unique movements and immune responses of diverse bird species.
View Article and Find Full Text PDF
Article Synopsis
  • * The tigers showed persistent shedding of the virus in their feces for up to 29 days, but behavioral changes made nasal sampling difficult; however, they tolerated oral sampling.
  • * Despite precautions taken by staff, the outbreak's source was unclear, and no transmission to nearby primates occurred; this highlights the need for more research on SARS-CoV-2 in wild cats.
View Article and Find Full Text PDF

Gulls are ubiquitous in urban areas due to a growing reliance on anthropogenic feeding sites, which has led to changes in their abundance, distribution, and migration ecology, with implications for disease transmission. Gulls offer a valuable model for testing hypotheses regarding the dynamics of influenza A virus (IAV) - for which gulls are a natural reservoir in urban areas. We sampled sympatric populations of Ring-billed (Larus delawarensis), Herring (L.

View Article and Find Full Text PDF

Ferrets () are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and onward transmission. Here, we report the results of a natural experiment where 29 ferrets in one home had prolonged, direct contact and constant environmental exposure to two humans with symptomatic disease, one of whom was confirmed positive for SARS-CoV-2. We observed no evidence of SARS-CoV-2 transmission from humans to ferrets based on viral and antibody assays.

View Article and Find Full Text PDF

Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition.

View Article and Find Full Text PDF

Influenza A virus (IAV) is known to circulate among human and animal reservoirs, yet there are few studies that address the potential for urban rodents to carry and shed IAV. Rodents are often used as influenza models in the lab, but the few field studies that have looked for evidence of IAV in rodents have done so primarily in rural areas following outbreaks of IAV in poultry. This study sought to assess the prevalence of IAV recovered from wild Norway rats in a dense urban location (Boston).

View Article and Find Full Text PDF

Population increases over the past several decades provide natural settings in which to study the evolutionary processes that occur during bottleneck, growth, and spatial expansion. We used parallel natural experiments of historical decline and subsequent recovery in two sympatric pinniped species in the Northwest Atlantic, the gray seal () and harbor seal (), to study the impact of recent demographic change in genomic diversity. Using restriction site-associated DNA sequencing, we assessed genomic diversity at over 8,700 polymorphic gray seal loci and 3,700 polymorphic harbor seal loci in samples from multiple cohorts collected throughout recovery over the past half-century.

View Article and Find Full Text PDF

Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. In recent years, genome-wide investigations have revealed numerous host factors that are required for influenza to successfully complete its life cycle. However, only a select, small number of influenza strains were evaluated using this platform, and there was considerable variation in the genes identified across different investigations.

View Article and Find Full Text PDF

Environmental chemicals, particularly organochlorinated contaminants (OCs), are associated with a ranged of adverse health effects, including impairment of the immune system and antiviral immunity. Influenza A virus (IAV) is an infectious disease of major global public health concern and exposure to OCs can increase the susceptibility, morbidity, and mortality to disease. It is however unclear how pollutants are interacting and affecting the outcome of viral infections at the cellular level.

View Article and Find Full Text PDF

Gray seals (Halichoerus grypus) have been rapidly recolonizing the Northeast US coast, eliciting concern from the fishing industry. However, the ecological effect of this recovery is still unknown and as such, research is needed to better understand how the diet composition of gray seals in US waters will contribute to the ecological impact. While previous research on seal diets has focused on the analysis of hard prey remains, stable isotope analysis presents an alternative method that can be used to describe marine mammal diets when direct observation is impossible.

View Article and Find Full Text PDF

Prevalence of influenza A virus (IAV) infections in northern-breeding waterfowl has previously been reported to reach an annual peak during late summer or autumn; however, little is known about IAV infection dynamics in waterfowl populations persisting at high-latitude regions such as Alaska, during winter. We captured mallards (Anas platyrhynchos) throughout the non-breeding season (August-April) of 2012-2015 in Fairbanks and Anchorage, the two largest cities in Alaska, to assess patterns of IAV infection and antibody production using molecular methods and a standard serologic assay. In addition, we used virus isolation, genetic sequencing, and a virus microneutralization assay to characterize viral subtypes and to evaluate the immune response of mallards captured on multiple occasions through time.

View Article and Find Full Text PDF

Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.

View Article and Find Full Text PDF

Influenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists outside of UMEs, we undertook a multiyear investigation of IAV in healthy, live-captured Northwest Atlantic gray seals (Halichoerus grypus). From 2013 to 2015, we sampled 345 pups and 57 adults from Cape Cod, MA, USA and Nova Scotia, Canada consistently detecting IAV infection across all groups.

View Article and Find Full Text PDF

Bioinspired brush polymers containing α-2,6-linked sialic acids at the side chain termini were synthesized by protection-group-free, ring-opening metathesis polymerization. Polymers showed strain-selective antiviral activity through multivalent presentation of the sialosides. The multivalent effect was further controlled by independently varying the degree of polymerization, the number density of sialic acids, and the length of side chains in the brush polymers.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4⁺ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infection is extremely efficacious and can result in infection of multiple CD4⁺ T cells as these cells make exploratory contacts on the DC surface. While it has long been appreciated that activation of DCs with ligands that induce type I IFN signaling pathway dramatically enhances DC-mediated T cell trans infection, the mechanism by which this occurs has remained unclear until now.

View Article and Find Full Text PDF

Glycosphingolipids (GSLs) are components of the cell membrane that comprise a membrane bound lipid, ceramide, coupled to an extracellular carbohydrate. GSLs impact numerous aspects of membrane biology, including membrane fluidity, curvature, and organization. The role of these molecules in both chronic inflammation and infectious disease and underlying pathogenic mechanisms are just starting to be recognized.

View Article and Find Full Text PDF

The interaction between HIV and dendritic cells (DCs) is an important early event in HIV-1 pathogenesis that leads to efficient viral dissemination. Here we demonstrate a HIV gp120-independent DC capture mechanism that uses virion-incorporated host-derived gangliosides with terminal α2-3-linked sialic acid linkages. Using exogenously enriched virus and artificial liposome particles, we demonstrate that both α2-3 gangliosides GM1 and GM3 are capable of mediating this interaction when present in the particle at high levels.

View Article and Find Full Text PDF

A major goal of human immunodeficiency virus type 1 (HIV-1) vaccine efforts is the design of Envelope (Env)-based immunogens effective at eliciting heterologous or broad neutralizing antibodies (NAbs). We hypothesized that programming the B-cell response could be achieved by sequentially exposing the host to a collection of env variants representing the viral quasispecies members isolated from an individual that developed broad NAbs over time. This ordered vaccine approach (sequential) was compared to exposure to a cocktail of env clones (mixture) and to a single env variant (clonal).

View Article and Find Full Text PDF

Two frequently employed methods for generating well-characterized, genetically defined infectious human immunodeficiency virus type 1 in vitro include the use of infectious molecular clones (IMCs) and pseudoviruses (PVs) competent for single-round infection. We compared six matched pairs of IMCs and PVs. The relative amounts of Env incorporated and efficiency of cleavage differed substantially between the two systems.

View Article and Find Full Text PDF