Objective: Non-invasive neuromodulation techniques, particularly transcranial direct current stimulation (tDCS), are promising for drug-resistant epilepsy (DRE), though the mechanisms of their efficacy remain unclear. This study aims to (i) investigate tDCS neurophysiological mechanisms using a personalized multichannel protocol with magnetoencephalography (MEG) and (ii) assess post-tDCS changes in brain connectivity, correlating them with clinical outcomes.
Methods: Seventeen patients with focal DRE underwent three cycles of tDCS over five days, each consisting of 40-minute stimulations targeting the epileptogenic zone (EZ) identified via stereo-EEG.
PLoS Comput Biol
December 2024
Neuroplasticity refers to functional and structural changes in brain regions in response to healthy and pathological activity. Activity dependent plasticity induced by epileptic activity can involve healthy brain regions into the epileptogenic network by perturbing their excitation/inhibition balance. In this article, we present a new neural mass model, which accounts for neuroplasticity, for investigating the possible mechanisms underlying the epileptogenic network expansion.
View Article and Find Full Text PDFObjective: Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for clinical and research applications. Yet, it remains unclear how the stimulation frequency differentially impacts various neuron types. Here, we aimed to quantify the frequency-dependent behavior of key neocortical cell types.
View Article and Find Full Text PDFObjective: For the pre-surgical evaluation of patients with drug-resistant focal epilepsy, stereo-electroencephalographic (SEEG) signals are routinely recorded to identify the epileptogenic zone network (EZN). This network consists of remote brain regions involved in seizure initiation. However, the pathophysiological mechanisms underlying typical SEEG patterns that occur during the transition from interictal to ictal activity in distant brain nodes of the EZN remain poorly understood.
View Article and Find Full Text PDFObjective: Clinical exploitation of transcranial electrical stimulation for focal epilepsy treatment lacks quantification of the underlying neurophysiological changes. This study explores the immediate effects of transcranial alternating (tACS) and direct (tDCS) current stimulation on local and network brain activity using simultaneous stereoelectroencephalography (SEEG) recordings.
Methods: Patients were randomized for personalized tACS (n = 5) or tDCS (n = 6).
In patients with refractory epilepsy, the clinical interpretation of stereoelectroencephalographic (SEEG) signals is crucial to delineate the epileptogenic network that should be targeted by surgery. We propose a pipeline of patient-specific computational modeling of interictal epileptic activity to improve the definition of regions of interest. Comparison between the computationally defined regions of interest and the resected region confirmed the efficiency of the pipeline.
View Article and Find Full Text PDFObjective: This study aims to detect the seizure onset, in childhood absence epilepsy, as early as possible. Indeed, interfering with absence seizures with sensory simulation has been shown to be possible on the condition that the stimulation occurs soon enough after the seizure onset.
Methods: We present four variations (two supervised, two unsupervised) of an algorithm designed to detect the onset of absence seizures from 4 scalp electrodes, and compare their performance with that of a state-of-the-art algorithm.
Objective: The aim is to gain insight into the pathophysiological mechanisms underlying interictal epileptiform discharges observed in electroencephalographic (EEG) and stereo-EEG (SEEG, depth electrodes) recordings performed during pre-surgical evaluation of patients with drug-resistant epilepsy.
Methods: We developed novel neuro-inspired computational models of the human cerebral cortex at three different levels of description: i) microscale (detailed neuron models), ii) mesoscale (neuronal mass models) and iii) macroscale (whole brain models). Although conceptually different, micro- and mesoscale models share some similar features, such as the typology of neurons (pyramidal cells and three types of interneurons), their spatial arrangement in cortical layers, and their synaptic connectivity (excitatory and inhibitory).
Objective: We have developed a novel method for estimating brain tissue electrical conductivity using low-intensity pulse stereoelectroencephalography (SEEG) stimulation coupled with biophysical modeling. We evaluated the hypothesis that brain conductivity is correlated with the degree of epileptogenicity in patients with drug-resistant focal epilepsy.
Methods: We used bipolar low-intensity biphasic pulse stimulation (.
Epilepsia partialis continua (EPC) is a rare type of focal motor status epilepticus that causes continuous muscle jerking in a specific part of the body. Experiencing this type of seizure, along with other seizure types, such as focal motor seizures and focal to bilateral tonic-clonic seizures, can result in a disabling situation. Non-invasive brain stimulation methods like transcranial direct current stimulation (tDCS) show promise in reducing seizure frequency (SF) when medications are ineffective.
View Article and Find Full Text PDFBioengineering (Basel)
January 2024
Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from abnormal neuronal hyperexcitability. In the case of pharmacoresistant epilepsy requiring resection surgery, the identification of the Epileptogenic Zone (EZ) is critical. Fast Ripples (FRs; 200-600 Hz) are one of the promising biomarkers that can aid in EZ delineation.
View Article and Find Full Text PDFObjective: We studied the rate dynamics of interictal events occurring over fast-ultradian time scales, as commonly examined in clinics to guide surgical planning in epilepsy.
Methods: Stereo-electroencephalography (SEEG) traces of 35 patients with good surgical outcome (Engel I) were analyzed. For this we developed a general data mining method aimed at clustering the plethora of transient waveform shapes including interictal epileptiform discharges (IEDs) and assessed the temporal fluctuations in the capability of mapping the epileptogenic zone (EZ) of each type of event.
Intracranial electrodes are used clinically for diagnostic or therapeutic purposes, notably in drug-refractory epilepsy (DRE) among others. Visualization and quantification of the energy delivered through such electrodes is key to understanding how the resulting electric fields modulate neuronal excitability, i.e.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
August 2023
Objective: Microelectrodes allow the recording of neural activities with a high spatial resolution. However, their small sizes result in high impedance causing high thermal noise and poor signal-to-noise ratio. In drug-resistant epilepsy, the accurate detection of Fast Ripples (FRs) can help in the identification of epileptogenic networks.
View Article and Find Full Text PDFWe provide a systematic framework for quantifying the effect of externally applied weak electric fields on realistic neuron compartment models as captured by physiologically relevant quantities such as the membrane potential or transmembrane current as a function of the orientation of the field.We define a response function as the steady-state change of the membrane potential induced by a canonical external field of 1 V mas a function of its orientation. We estimate the function values through simulations employing reconstructions of the rat somatosensory cortex from the Blue Brain Project.
View Article and Find Full Text PDFStereotactic-electroencephalography (SEEG) and scalp EEG recordings can be modeled using mesoscale neural mass population models (NMMs). However, the relationship between those mathematical models and the physics of the measurements is unclear. In addition, it is challenging to represent SEEG data by combining NMMs and volume conductor models due to the intermediate spatial scale represented by these measurements.
View Article and Find Full Text PDFPurpose: Transcranial electrical current stimulation (tES or tCS, as it is sometimes referred to) has been proposed as non-invasive therapy for pharmacoresistant epilepsy. This technique, which includes direct current (tDCS) and alternating current (tACS) stimulation involves the application of weak currents across the cortex to change cortical excitability. Although clinical trials have demonstrated the therapeutic efficacy of tES, its specific effects on epileptic brain activity are poorly understood.
View Article and Find Full Text PDFIn partial epilepsies, interictal epileptiform discharges (IEDs) are paroxysmal events observed in epileptogenic zone (EZ) and non-epileptogenic zone (NEZ). IEDs' generation and recurrence are subject to different hypotheses: they appear through glutamatergic and gamma-aminobutyric acidergic (GABAergic) processes; they may trigger seizures or prevent seizure propagation. This paper focuses on a specific class of IEDs, spike-waves (SWs), characterized by a short-duration spike followed by a longer duration wave, both of the same polarity.
View Article and Find Full Text PDFWork in the last two decades has shown that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by increasing excitation and heuristically varying network inhibitory coupling parameters in the models. Based on these early studies, we provide a laminar NMM capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states.
View Article and Find Full Text PDFFocal epilepsies are diseases of neuronal excitability affecting macroscopic networks of cortical and subcortical neural structures. These networks ("epileptogenic networks") can generate pathological electrophysiological activities during seizures, and also between seizures (interictal period). Many works attempt to describe these networks by using quantification methods, particularly based on the estimation of statistical relationships between signals produced by brain regions, namely functional connectivity (FC).
View Article and Find Full Text PDFAmong the cognitive symptoms that are associated with Parkinson's disease (PD), alterations in cognitive action control (CAC) are commonly reported in patients. CAC enables the suppression of an automatic action, in favor of a goal-directed one. The implementation of CAC is time-resolved and arguably associated with dynamic changes in functional brain networks.
View Article and Find Full Text PDFObjective: In epilepsy, multichannel transcranial direct electrical stimulation (tDCS) is applied to decrease cortical activity through the delivery of weak currents using several scalp electrodes. We investigated the long-term effects of personalized, multisession, stereotactic-EEG (SEEG)-targeted multichannel tDCS on seizure frequency (SF) and functional connectivity (Fc) as measured by EEG in patients with drug-resistant epilepsy (DRE).
Methods: Ten patients suffering from DRE were recruited.
. Metal implants impact the dosimetry assessment in electrical stimulation techniques. Therefore, they need to be included in numerical models.
View Article and Find Full Text PDFJ Math Neurosci
September 2021
Mathematical models at multiple temporal and spatial scales can unveil the fundamental mechanisms of critical transitions in brain activities. Neural mass models (NMMs) consider the average temporal dynamics of interconnected neuronal subpopulations without explicitly representing the underlying cellular activity. The mesoscopic level offered by the neural mass formulation has been used to model electroencephalographic (EEG) recordings and to investigate various cerebral mechanisms, such as the generation of physiological and pathological brain activities.
View Article and Find Full Text PDF