Prediction of therapeutic peptide is a significant step for the discovery of promising therapeutic drugs. Most of the existing studies have focused on the mono-functional therapeutic peptide prediction. However, the number of multi-functional therapeutic peptides (MFTP) is growing rapidly, which requires new computational schemes to be proposed to facilitate MFTP discovery.
View Article and Find Full Text PDFThe bioactive peptide has wide functions, such as lowering blood glucose levels and reducing inflammation. Meanwhile, computational methods such as machine learning are becoming more and more important for peptide functions prediction. Most of the previous studies concentrate on the single-functional bioactive peptides prediction.
View Article and Find Full Text PDFAnti-parasitic peptides (APPs) have been regarded as promising therapeutic candidate drugs against parasitic diseases. Due to the fact that the experimental techniques for identifying APPs are expensive and time-consuming, there is an urgent need to develop a computational approach to predict APPs on a large scale. In this study, we provided a computational method, termed PredAPP (Prediction of Anti-Parasitic Peptides) that could effectively identify APPs using an ensemble of well-performed machine learning (ML) classifiers.
View Article and Find Full Text PDFInterdiscip Sci
December 2021
Transmembrane proteins play a vital role in cell life activities. There are several techniques to determine transmembrane protein structures and X-ray crystallography is the primary methodology. However, due to the special properties of transmembrane proteins, it is still hard to determine their structures by X-ray crystallography technique.
View Article and Find Full Text PDFBlood-brain barrier peptides (BBPs) have a large range of biomedical applications since they can cross the blood-brain barrier based on different mechanisms. As experimental methods for the identification of BBPs are laborious and expensive, computational approaches are necessary to be developed for predicting BBPs. In this work, we describe a computational method, BBPpred (blood-brain barrier peptides prediction), that can efficiently identify BBPs using logistic regression.
View Article and Find Full Text PDFAs hormones in the endocrine system and neurotransmitters in the immune system, neuropeptides (NPs) provide many opportunities for the discovery of new drugs and targets for nervous system disorders. In spite of their importance in the hormonal regulations and immune responses, the bioinformatics predictor for the identification of NPs is lacking. In this study, we develop a predictor for the identification of NPs, named PredNeuroP, based on a two-layer stacking method.
View Article and Find Full Text PDF