The kidney is an important source of angiotensin-converting enzyme (ACE) in many species, including humans. However, the specific effects of local ACE on renal function and, by extension, BP control are not completely understood. We previously showed that mice lacking renal ACE, are resistant to the hypertension induced by angiotensin II infusion.
View Article and Find Full Text PDFAngiotensin-converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects.
View Article and Find Full Text PDFRapid progress in genomics and nanotechnology continue to advance our approach to patient care, from diagnosis and prognosis, to targeting and personalization of therapeutics. However, the clinical application of molecular diagnostics in ophthalmology has been limited even though there have been demonstrations of disease risk and pharmacogenetic associations. There is a high clinical need for therapeutic personalization and dosage optimization in ophthalmology and may be the focus of individualized medicine in this specialty.
View Article and Find Full Text PDFAngiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response.
View Article and Find Full Text PDFIn the field of oncology, clinical molecular diagnostics and biomarker discoveries are constantly advancing as the intricate molecular mechanisms that transform a normal cell into an aberrant state in concert with the dysregulation of alternative complementary pathways are increasingly understood. Progress in biomarker technology, coupled with the companion clinical diagnostic laboratory tests, continue to advance this field, where individualized and customized treatment appropriate for each individual patient define the standard of care. Here, we discuss the current commonly used predictive pharmacogenetic biomarkers in clinical oncology molecular testing: BRAF V600E for vemurafenib in melanoma; EML4-ALK for crizotinib and EGFR for erlotinib and gefitinib in non-small-cell lung cancer; KRAS against the use of cetuximab and panitumumab in colorectal cancer; ERBB2 (HER2/neu) for trastuzumab in breast cancer; BCR-ABL for tyrosine kinase inhibitors in chronic myeloid leukemia; and PML/RARα for all-trans-retinoic acid and arsenic trioxide treatment for acute promyelocytic leukemia.
View Article and Find Full Text PDF-Angiotensin-converting enzyme (ACE) is composed of the N- and C-terminal catalytic domains. To study the role of the ACE domains in the inflammatory response, N-knockout (KO) and C-KO mice, models lacking 1 of the 2 ACE domains, were analyzed during angiotensin II-induced hypertension. At 2 weeks, N-KO mice have systolic blood pressures that averaged 173±4.
View Article and Find Full Text PDF