Publications by authors named "Wendell Ela"

Despite extensive research over the last several decades, the microscopic characterization of topological phases of adsorbed phenol from aqueous solutions in carbon micropores (pore size < 2.0 nm), which are believed to exhibit a solid and quasi-solid character, has not been reported. Here, we present a combined experimental and molecular level study of phenol adsorption from neutral water solutions in graphitic carbon micropores.

View Article and Find Full Text PDF

Transparent exopolymer particles (TEP) and their precursors are gel-like acidic polysaccharide particles. Both TEP precursors and TEP have been identified as causal factors in fouling of desalination and water treatment systems. For comparison between studies, it is important to accurately measure the amount and fouling capacity of both components.

View Article and Find Full Text PDF

Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences.

View Article and Find Full Text PDF

The overall project objective at the Iron King Mine Superfund site is to determine the level and potential risk associated with heavy metal exposure of the proximate population emanating from the site's tailings pile. To provide sufficient size-fractioned dust for multi-discipline research studies, a dust generator was built and is now being used to generate size-fractioned dust samples for toxicity investigations using in vitro cell culture and animal exposure experiments as well as studies on geochemical characterization and bioassay solubilization with simulated lung and gastric fluid extractants. The objective of this study is to provide a robust method for source identification by comparing the tailing sample produced by dust generator and that collected by MOUDI sampler.

View Article and Find Full Text PDF

The Navajo Nation is the largest and one of the driest Native American reservations in the US. The population in the Navajo Nation is sporadically distributed over a very large area making it extremely ineffective to connect homes to a centralized water supply system. Owing to this population distribution and the multi decadal drought prevailing in the region, over 40% of the 300,000 people living on Navajo Tribal Lands lack access to running potable water.

View Article and Find Full Text PDF

The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7-9, where after sorption decreases with further increases in pH.

View Article and Find Full Text PDF

The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials.

View Article and Find Full Text PDF

Provision of clean water is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest.

View Article and Find Full Text PDF

Arsenic Crystallization Technology (ACT) is a potentially eco-friendly, effective technology for stabilization of arsenic-bearing solid residuals (ABSRs). The strategy is to convert ABSRs generated by water treatment facilities into minerals with a high arsenic capacity and long-term stability in mature, municipal solid waste landfills. Candidate minerals considered in this study include scorodite, arsenate hydroxyapatites, ferrous arsenates (symplesite-type minerals), tooeleite, and arsenated-schwertmannite.

View Article and Find Full Text PDF

During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the toxicity characteristic leaching procedure (TCLP) currently used to characterize hazard.

View Article and Find Full Text PDF

Background: This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants.

Objectives: Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants.

View Article and Find Full Text PDF

Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing residuals which are disposed in non-hazardous landfills. Previous works have established that many of these residuals will release arsenic to a much greater extent than predicted by standard regulatory leaching tests (e.g.

View Article and Find Full Text PDF

Large quantities of polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in clothing and plastic products since the 1970s. A small fraction of the PBDEs in manufactured products subsequently enters municipal wastewater. Nevertheless, the resistance of these compounds to chemical and biochemical transformations provides opportunities for accumulation in sediments that are in contact with wastewater effluent and agricultural soils that are amended with biosolids derived from wastewater treatment.

View Article and Find Full Text PDF

Amorphous ferric hydroxide (AFH) sorbents are commonly used for removal of arsenate from water. When disposed in microbially active, reducing environments, such as landfills, Fe(II) will be generated by reductive dissolution of the AFH surface and arsenate will be desorbed. However, the observed ratio of arsenate (and, in fact, total arsenic) to total iron in the leachate is not consistent with the original ratio of arsenate to iron on the AFH.

View Article and Find Full Text PDF

Total estrogenic activity, measured using the yeast estrogen screen reporter gene bioassay, decreased from 60 pM (equivalent 17alpha-ethinylestradiol concentration) to an estimated 1.4 pM during a 24-hour period in which secondary effluent was held in a shallow infiltration basin. Over the same period, anti-estrogenic activity, measured as an equivalent concentration of tamoxifen, increased from 35 to 260 nM, suggesting that antagonists produced during secondary effluent storage played a role in the apparent loss of estrogenic activity.

View Article and Find Full Text PDF

Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in nonhazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill.

View Article and Find Full Text PDF

A conventional fuel cell was used as a catalytic reactor to treat soil vapor extraction (SVE) gases contaminated with trichloroethylene (TCE). The SVE gases are fed to the cathode side of the fuel cell, where TCE is reduced to ethane and hydrochloric acid. The results obtained suggest that TCE reduction occurs by a catalytic reaction with hydrogen that is re-formed on the cathode's surface beyond a certain applied cell potential.

View Article and Find Full Text PDF

Implementation of the new arsenic MCL in 2006 will lead to the generation of an estimated 6 million pounds of arsenic-bearing solid residuals (ABSRs) every year, which will be disposed predominantly in non-hazardous landfills. The Toxicity Characteristic Leaching Procedure (TCLP) is typically used to assess whether a waste is hazardous and most solid residuals pass the TCLP. However, recent research shows the TCLP significantly underestimates arsenic mobilization in landfills.

View Article and Find Full Text PDF

Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was chemically regenerated utilizing the Fenton mechanism. Two successive GAC regeneration cycles were performed involving iterative adsorption and oxidation processes: MTBE was adsorbed to the GAC, oxidized, re-adsorbed, oxidized, and finally re-adsorbed. Oxidant solutions comprised of hydrogen peroxide (H2O2) (1.

View Article and Find Full Text PDF

Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.

View Article and Find Full Text PDF

A convenient new chemical actinometer was developed to measure the spectral output of laboratory ultraviolet (UV) light sources over the wavelength range of 260-330 nm. It can also be used to measure solar UV irradiance (< or =325 nm). The actinometer is based on the photoreduction of aqueous carbon tetrachloride (CT) to chloroform (CF) in the presence of acetone (the chromophore) and 2-propanol (the reductant).

View Article and Find Full Text PDF

Recent revision of the arsenic in drinking water standard will cause many utilities to implement removal technologies. Most of the affected utilities are expected to use adsorption onto solid media for arsenic removal. The arsenic-bearing solid residuals (ABSR) from adsorption processes are to be disposed of in nonhazardous landfills.

View Article and Find Full Text PDF

Hydrophobic acid (HPO-A) and transphilic acid (TPI-A) fractions of dissolved organic matter (DOM) were isolated from a domestic secondary wastewater effluent that was polished via soil aquifer treatment (SAT). Fractions were isolated using XAD resin adsorption chromatography from samples obtained along the vadose zone flowpath at a full-scale basin recharge facility in Tucson, Arizona. Changes in isolate character during SAT were established via biodegradability (batch test), specific ultraviolet light absorbance (SUVA), trihalomethane formation potential (THMFP), and Ames mutagenicity assays.

View Article and Find Full Text PDF