Biocompatible polymer coatings for magnetic nanoparticles have shown to drastically increase their usability towards biomedical applications. The coatings imprint characteristics such as stability, resistance to non-specific adsorption and tolerance in complex media for biomedicine. Herein, a thorough investigation towards the anionic ring-opening polymerization of glycidol on the surface of carbon-coated cobalt nanoparticle was performed.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) are often used for biosensing. In particular, aptamer-modified AuNPs are often used for colorimetric molecular detection, where target molecule-induced AuNP aggregates can be recognized by a color change from red to blue. However, non-specific aggregation could be induced by various compounds, leading to false-positive results.
View Article and Find Full Text PDFMagnetic nanosensors have become attractive instruments for the diagnosis and treatment of different diseases. They represent an efficient carrier system in drug delivery or in transporting contrast agents. For such purposes, magnetic nanosensors are used in vivo (intracorporeal application).
View Article and Find Full Text PDFWe investigate the flow past two transcatheter aortic valves (TAVs) and one severely calcified valve in an anatomically realistic aorta geometry to evaluate the ability of the TAVs to establish a healthier aortic flow compared to a diseased case. Velocity measurements of pulsatile flow are carried out using the 3D-particle tracking velocimetry technique. We present a novel approach based on the Smagorinsky model to assess the important subvoxel-scale (here smaller than 750 [Formula: see text]m) shear stress contribution that is usually unavailable in experiments.
View Article and Find Full Text PDFFuture left ventricular assist devices (LVADs) are expected to respond to the physiologic need of patients; however, they still lack reliable pressure or volume sensors for feedback control. In the clinic, echocardiography systems are routinely used to measure left ventricular (LV) volume. Until now, echocardiography in this form was never integrated in LVADs due to its computational complexity.
View Article and Find Full Text PDFThe combination of force and flexibility is at the core of biomechanics and enables virtually all body movements in living organisms. In sharp contrast, presently used machines are based on rigid, linear (cylinders) or circular (rotator in an electrical engine) geometries. As a potential bioinspired alternative, magnetic elastomers can be realized through dispersion of micro- or nanoparticles in polymer matrices and have attracted significant interest as soft actuators in artificial organs, implants, and devices for controlled drug delivery.
View Article and Find Full Text PDF