Publications by authors named "Wendel Batista Silveira"

Article Synopsis
  • - Machine learning is essential for analyzing large biological datasets and improving predictions, especially given the recent increase in biological data from high-throughput technologies.
  • - The study highlights the necessity for effective modeling approaches to interpret complex molecular systems better.
  • - The authors demonstrate how to use automated machine learning (AutoML) to create a model for predicting protein abundance in Schizosaccharomyces pombe by analyzing data from codon usage bias and quantitative proteomics.
View Article and Find Full Text PDF

Products from stingless bees are rich reservoirs of microbial diversity, including yeasts with fermentative potential. Previously, two Saccharomyces cerevisiae strains, JP14 and IP9, were isolated from Jataí (Tetragonisca angustula) and Iraí (Nannotrigona testaceicornis) bees, respectively, aiming at mead production. Both strains presented great osmotic and sulfite tolerance, and ethanol production, although they have a high free amino nitrogen demand.

View Article and Find Full Text PDF

Biodiesel is an interesting alternative to petroleum diesel as it is renewable, biodegradable, and has a low pollutant content. Yeast oils can be used for biodiesel production instead of edible oils, mitigating the use of arable land and water for biodiesel production. Maximum lipid accumulation is reached at 48 h of cultivation by the oleaginous yeast Papiliotrema laurentii UFV-1.

View Article and Find Full Text PDF

Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K.

View Article and Find Full Text PDF

Papiliotrema laurentii, previously classified as Cryptococcus laurentii, is an oleaginous yeast that has been isolated from soil, plants, and agricultural and industrial residues. This variety of habitats reflects the diversity of carbon sources that it can metabolize, including monosaccharides, oligosaccharides, glycerol, organic acids, and oils. Compared to other oleaginous yeasts, such as Yarrowia lipolytica and Rhodotorula toruloides, there is little information regarding its genetic and physiological characteristics.

View Article and Find Full Text PDF

The microbial conversion of pentoses to ethanol is one of the major drawbacks that limits the complete use of lignocellulosic sugars. In this study, we compared the yeast species Spathaspora arborariae, Spathaspora passalidarum, and Sheffersomyces stipitis regarding their potential use for xylose fermentation. Herein, we evaluated the effects of xylose concentration, presence of glucose, and temperature on ethanol production.

View Article and Find Full Text PDF

The rising concern with the emission of greenhouse gases has boosted new incentives for biofuels production, which are less polluting than fossil fuels. Special attention has been given to the second-generation ethanol, as it is produced from abundant feedstocks which do not compete with food production, such as lignocellulosic biomass and whey. Kluyveromyces marxianus stands out in second-generation ethanol production due to its capacity of assimilating lactose, the sugar found in whey, and tolerating high temperatures used in simultaneous saccharification processes.

View Article and Find Full Text PDF

2-phenylethanol (2-PE) is a higher aromatic alcohol with a rose-like aroma used in the cosmetic and food industries as a flavoring and displays potential for application as an antifungal. Biotechnological production of 2-PE from yeast is an interesting alternative due to the non-use of toxic compounds and the generation of few by-products. Kluyveromyces marxianus CCT 7735 is a thermotolerant strain capable of producing high 2-PE titers from L-Phenylalanine; however, like other yeast species, its growth has been strongly inhibited by this alcohol.

View Article and Find Full Text PDF

In this work, we isolated and selected oleaginous yeasts from rock field soils from two National Parks in Brazil ( and ) with the potential to accumulate oil from xylose, the main pentose sugar found in lignocellulosic biomass. From the 126 isolates, two were selected based on their lipid contents. They were taxonomically identified as (UFV-1 and UFV-2).

View Article and Find Full Text PDF

Kluyveromyces marxianus CCT 7735 shows potential for producing ethanol from lactose; however, its low ethanol tolerance is a drawback for its industrial application. The first aim of this study was to obtain four ethanol-tolerant K. marxianus CCT 7735 strains (ETS1, ETS2, ETS3, and ETS4) by adaptive laboratory evolution.

View Article and Find Full Text PDF

Production of xylitol from lignocellulosic biomass is of interest to modern biorefineries, because this biomass should be processed into a spectrum of chemicals (bio-based products) and not only energy. The isolation of new yeast strains capable of efficiently converting xylose into xylitol and withstanding inhibitors released from biomass hydrolysis can contribute to making its production feasible in biorefineries. Forty-three out of 128 yeast strains isolated from the gut of Passalidae beetles were capable of assimilating xylose as the sole carbon source.

View Article and Find Full Text PDF

Kluyveromyces marxianus CCT 7735 offers advantages to ethanol production over Saccharomyces cerevisiae, including thermotolerance and the ability to convert lactose to ethanol. However, its growth is impaired at high ethanol concentrations. Herein we report on the protein and intracellular metabolite profiles of K.

View Article and Find Full Text PDF

The thermotolerant yeast Kluyveromyces marxianus displays a potential to be used for ethanol production from both whey and lignocellulosic biomass at elevated temperatures, which is highly alluring to reduce the cost of the bioprocess. Nevertheless, contrary to Saccharomyces cerevisiae, K. marxianus cannot tolerate high ethanol concentrations.

View Article and Find Full Text PDF

Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate.

View Article and Find Full Text PDF

The yeast Kluyveromyces marxianus is a convenient host for industrial synthesis of biomolecules. However, despite its potential, there are few studies reporting the expression of heterologous proteins using this yeast. Here, we report expression of a dengue virus protein in K.

View Article and Find Full Text PDF

Although many putative laccase-like genes have been assigned to members of the phylum Actinobacteria, few of the related enzymes have been characterized so far. It is noteworthy, however, that this small number of enzymes has presented properties with industrial relevance. This observation, combined with the recognized biotechnological potential and the capability of this phylum to degrade recalcitrant soil polymers, has attracted attention for bioprospective approaches.

View Article and Find Full Text PDF

Ethanol can be produced from cellulosic biomass in a process known as simultaneous saccharification and fermentation (SSF). The presence of yeast together with the cellulolytic enzyme complex reduces the accumulation of sugars within the reactor, increasing the ethanol yield and saccharification rate. This paper reports the isolation of Saccharomyces cerevisiae LBM-1, a strain capable of growth at 42 °C.

View Article and Find Full Text PDF